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SUMMARY

We coexist with a vast number of microbes that live in and on our bodies. Thosemicrobes and their genes are
collectively known as the human microbiome, which plays important roles in human physiology and dis-
eases. We have acquired extensive knowledge of the organismal compositions and metabolic functions of
the human microbiome. However, the ultimate proof of our understanding of the human microbiome is re-
flected in our ability to manipulate it for health benefits. To facilitate the rational design of microbiome-based
therapies, there are many fundamental questions to be addressed at the systems level. Indeed, we need a
deep understanding of the ecological dynamics associated with such a complex ecosystem before we ratio-
nally design control strategies. In light of this, this review discusses progress from various fields, e.g., com-
munity ecology, network science, and control theory, that are helping us make progress toward the ultimate
goal of controlling the human microbiome.
INTRODUCTION

We coexist with a vast number of microbes that live in and on our

bodies. Those microbes and their genes are collectively known

as the human microbiome, which plays very important roles in

human physiology and diseases. Propelled by next-generation

sequencing technologies, many scientific advances have been

made through the work of large-scale, consortium-driven micro-

biome projects,1–3 helping us acquire more accurate taxonomic

and functional compositions of the human microbiome than

before.

It is now well known that the largest portion of the microorgan-

isms lives in our gut, and most of them are bacteria.4 The human

gutmicrobiome can be altered by dietary changes,5,6 medical in-

terventions,7 and many other factors.8–10 The alterability of our

gut microbiome offers a promising future for microbiome-based

therapies for the prevention and treatment of diseases associ-

ated with disrupted gut microbiomes.9,11 In particular, infections

by human pathogens are likely preventable with microbiota-

based approaches, offering an intriguing alternative to antibiotic

treatment with the added benefit of helping to curb the rise of

antibiotic-resistant strains. However, due to its high complexity,

untargeted interventions could shift our microbiome to an unde-

sired state with unintended health consequences and hence

raise safety concerns.12–14 So far, FDA has only approved one

microbiome-based therapeutic: Rebyota, which is a fecal micro-

biota suspension for rectal administration.15 A handful of

other products have entered or just completed phase-3 trials.

Those products (including Rebyota) are typically based on

donor-derived treatments for recurrent Clostridioides difficile

(C. difficile) infection for which the traditional treatment, i.e., fecal
microbiota transplantation (FMT),16–18 has already been very

successful.

Beyond some technical difficulties (e.g., the false negative and

false positive issues in metagenomic profiling,19 distinguish the

living from the dead in microbial communities,20 etc.), there are

several conceptual challenges in developing microbiome-based

therapies to control the human microbiome. First, we do not

know the wiring diagram of the complex ecosystem associated

with the human microbiome. Consequently, we do not have a

fully parameterized mathematical model to describe its sys-

tems-level dynamics in the absence or presence of different

interventions. This represents the biggest hurdle to the develop-

ment of any model-based control strategies. Second, our micro-

biome is highly personalized. We can never find two individuals

who share the same microbial composition. This prompts us to

ask how personalized the design of microbiome-based thera-

peutics should be. Third, our microbiome is stable, functionally

redundant, and likely difficult to manipulate. Indeed, for the hu-

man gut microbiome, in the absence of large perturbations,

such as repeated antibiotic treatment or drastic diet changes,

it is very stable. This stability or resilience is closely related to

its functional redundancy, which underscores the difficulty of

manipulating its composition with mild or short-term pertur-

bation.

In this review, we will describe those three challenges in detail

(section conceptual challenges). Then, we will review the recent

progress made from community ecology, network science, and

control theory perspectives, which facilitate our understanding

and control of complex microbial communities. In particular,

we first introduce different modeling frameworks of microbial

communities in section modeling framework, serving as the
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A B Figure 1. The ecological network associated
with a microbial community can have two
different representations with different levels
of complexity
(A) The first representation is a bipartite graph con-
necting two types of nodes: microbial species and
chemical compounds (e.g., nutrients, metabolites,
signaling molecules, toxins, etc.). Species can
consume or produce consumable chemical com-
pounds (e.g., metabolites), whereas reusable chem-
ical compounds (e.g., signalingmolecules and toxins)
can stimulate or inhibit the growth of species.21

(B) The second representation is a unipartite graph
where nodes represent microbial species and edges
represent pairwise inter-species interactions. One
species can promote or inhibit the growth of another
species. The unipartite graph can be considered
a projection of the bipartite graph onto the species
nodes. Although the projection is not perfect, it
does simplify the network reconstruction problem.
Figure courtesy of Dr. Xu-Wen Wang.
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foundation of designing model-based control strategies. In sec-

tion universality of microbial dynamics, we focus on simple pop-

ulation-level models (PLMs) and discuss the universality of their

microbial dynamics, which determines how personalized the

design of microbiome-based therapeutics should be. In section

reconstruction of the ecological network, we introduce different

computational methods to reconstruct the ecological network of

complex microbial communities, using either temporal (‘‘longitu-

dinal’’) data or steady-state (‘‘cross-sectional’’) data. In section

control strategy design, we introduce a theoretical framework

for controlling microbial communities and two practical control

strategies. Finally, in section outlook, we suggest a few prom-

ising directions that require insights and tools from other disci-

plines (e.g., bioinformatics, machine learning, and culturomics).

CONCEPTUAL CHALLENGES

Challenge 1: We do not know the wiring diagram of this
complex ecosystem
Weconsider the human gutmicrobiome as a dynamic ecosystem

associated with a complex ecological network. As such, tools

from community ecology, network science, dynamical systems,

and control theory can be used to infer network structure andmi-

crobial interactions, predict temporal behavior, and design effi-

cient control strategies. Unfortunately, the ecological network

of the human gut microbiome is largely unknown. In fact, this is

true for the microbiome of any site on or in the human body.

Depending on the model complexity, we can consider two

different representations of the ecological network (see Figure 1).

The first representation is a bipartite graph connecting two types

of nodes: microbial species (denoted as ‘‘S’’-nodes) and chem-

ical compounds (denoted as ‘‘C’’-nodes, representing nutrients,

metabolites, toxins, etc.).21 The edges in this bipartite graph

encode various mechanisms of microbial interactions, e.g., mul-

tiple species consume the same nutrients,22 resulting in mutual

competitions; one species produces some metabolites that

are consumed by other species, leading to metabolic cross-

feeding23; one species secrets antimicrobial peptides (e.g.,

bacteriocins24,25) that kill or inhibit other species; one species

secrets signaling molecules that stimulate the growth of other

species; etc. We emphasize that edges in this bipartite graph
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are determined by the functional repertoire encoded by the

microbial genomes and hence are mechanistic and relatively

robust to changing environmental conditions or host factors

over short ecological timescales. Some edges might be

‘‘silenced’’ sometimes because species may choose to deacti-

vate some functions but activate other functions to consume

certain resources to reduce the niche overlap with other species.

However, we do not expect completely new edges will emerge

over short ecological timescales. In other words, this bipartite

graph represents a relatively constant wiring diagram or ecolog-

ical network of microbial communities. However, mapping out

this type of ecological network is very challenging, if not impos-

sible. For complex habitats, e.g., the human gut, we do not even

have a comprehensive catalog of those chemical compounds

that mediate various types of microbial interactions. (In sections

mediator-explicit models and consumer-resource models, we

will describe population dynamics models based on this type

of ecological network and further explain the difficulty of param-

eterizing those models.)

The second representation of the ecological network is a

unipartite graph, where nodes represent microbial species and

edges represent direct inter-species interactions (e.g., para-

sitism, commensalism, mutualism, amensalism, or competition)

mediated by various mechanisms and chemical compounds as

discussed above. The direction, sign, and strength of a given

edge in this unipartite graph might be jointly determined by

several mechanisms together for a given set of environmental

conditions or host factors. This unipartite graph (Figure 1B) can

be conceptually considered as a projection of the bipartite graph

(Figure 1A) onto the ‘‘S’’ nodes. Although this projection may not

accurately capture all situations in which microbial interactions

take place through different mechanisms (e.g., a change in the

environment, or when the shared chemical compounds are pro-

duced or consumed by multiple species,21,28 or higher-order

interactions29,30), it does simplify the network reconstruction

problem. In section reconstruction of the ecological network,

we will discuss two types of network reconstruction methods

(based on longitudinal and cross-sectional data, respectively)

and the caveats of their usage (especially the requirement on

data informativeness). Here, we point out that edges in this uni-

partite graph are phenomenological or effective, which might be
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influenced by the change of environmental conditions or host

factors (especially drastic changes in diet or disease status)

even over short ecological timescales. In a sense, the effective

unipartite wiring diagram of amicrobial communitymight change

in response to large perturbations. Empirical data analysis indi-

cates that for the human gut microbiome of healthy adults,

despite having different ages, races, body mass indices, long-

term dietary patterns, and transit times through the gut, their

effective wiring diagrams are relatively universal or host indepen-

dent.31 However, we do not know if this is true for diseased mi-

crobiome or microbiome of infants or the elderly.

The two representations of the ecological network discussed

here are fundamentally different from any correlation or co-

occurrence network constructed from similarity-based tech-

niques, e.g., Pearson or Spearman correlations for abundance

data or the hypergeometric distribution for presence-absence

data.32 Those correlation or co-occurrence networks are undi-

rected and cannot be used to predict the dynamic behavior of

ecological systems simply because correlation is not causation.

In fact, mirage correlations can be observed even from a simple

two-species system with deterministic dynamics.33

The fact that the ecological network of our gut microbiome

(regardless of the unipartite or bipartite representation) is largely

unknown raises fundamental challenges in designing micro-

biome-based therapies. Let us consider the simplest scenario

of an acute infection (e.g.,C. difficile infection), where our control

objective is simply to decolonize the pathogen (i.e., C. difficile).

Bottom-up experimental approaches may offer a mechanistic

understanding of those microbial species that can directly inhibit

the growth of the target pathogen (through either bacteriocin or

niche competition). However, using species that directly inhibit

the pathogen can backfire because these species may also indi-

rectly enhance the growth of the pathogen through interactions

with other ‘‘mediator’’ species. In other words, the effective or

net impact of species-i on species-j is really context dependent.

This is a typical network effect, which is ubiquitous in microbial

communities.34 Consequently, naive perturbations can ripple

through an ecological network causing unexpected outcomes.

This network effect underscores the importance of understand-

ing the network structure in controlling the human microbiome

effectively and safely. The reason is simple: our microbiome is

highly personalized (see section challenge 2: our microbiome is

highly personalized). The mediator species might be present or

absent for any given individual. Hence, the context matters.

Challenge 2: Our microbiome is highly personalized
Thanks to big efforts of the Human Microbiome Project (HMP),1

we know that for any given body site, we can never find two sub-

jects who share exactly the same species collections and abun-

dance profiles (Figure 2A). In fact, community composition within

the human microbiome varies a lot across individuals. This vari-

ation is sufficient to uniquely identify individuals within large pop-

ulations and stable enough to identify them over time.35 In other

words, our microbiota is so personalized that it can serve as a

‘‘microbial fingerprint.’’

The highly personalized microbial composition can be due to

many host factors, such as birthmode (cesarean section delivery

vs. vaginal delivery), breastfeeding vs. formula feeding, antibiotic

exposure, environmental contaminants, medications, long-term
dietary patterns, etc. Moreover, observational studies of ecolog-

ical systems have shown that different species compositions can

arise from distinct species arrival orders (or colonization history)

during community assembly—also known as the priority ef-

fects.36,37 Extensive numerical simulations have found that the

strength of priority effects (calculated as the probability that

community composition is dominated by colonization history) in-

creases monotonically with community size, network connec-

tance, and the variation of species intrinsic growth rates.38

Beyond all the influences from host factors and historical con-

tingencies, the highly personalized microbial compositions

raise a fundamental question: Do different hosts have different

microbial ecosystems associated with different assembly rules

and population dynamics? If this is the case, then designing

generic microbiome-based therapeutics will be very challenging

because we need to consider not only the unique microbial

compositions of different hosts but also their unique microbial

dynamics. (In section universality of microbial dynamics, we pre-

sent a computational method to detect the universality of micro-

bial dynamics and discuss its limitations.) However, if different

hosts share similar microbial dynamics, then the highly person-

alized microbial compositions are simply due to their different

species collections. In this case, we can design interventions

based on universal dynamic rules to control the microbiome of

different individuals, although caution is still warranted. It is

hard to believe that a one-size-fits-all ‘‘probiotic cocktail’’ (a con-

sortium of well-selected live microorganisms that presumably

provide health benefits) will work for everyone simply because

our healthy baseline (and very likely the disrupted) microbiomes

are highly personalized. We might have to design ‘‘personalized

probiotic cocktails’’ to effectively control the microbiome of

different individuals.34 In section decolonize pathogens, we pre-

sent a strategy for designing personalized probiotic cocktail to

decolonize a single pathogen (e.g., C. difficile) and demonstrate

its efficacy using simulations.

The highly personalized microbial compositions also make the

test of true multi-stability in the human microbiome almost

impossible. Whether true multi-stability exists in the human mi-

crobiome has implications for multiple computational analyses,

e.g., the detection of universal microbial dynamics (see section

universality of microbial dynamics), and the network reconstruc-

tion based on steady-state data (see section steady-state data-

based inference). Here, true multi-stability means that for a given

set of species, there are multiple different stable states with all

the species present in the same environment. Mathematically,

those stable states are interior equilibrium points (rather than

boundary equilibrium points where some species are absent)

of the corresponding ecological system. True multi-stability

has beenwell discussed inmacro-ecological systems.39 Howev-

er, its detection in the human microbiome is rather difficult and

has not been demonstrated experimentally.

Challenge 3: Our microbiome is stable, functionally
redundant, and likely difficult to manipulate
Many previous studies have reported the long-term stability of

human gut, oral, and skin microbiome.40–43 For the human gut

microbiome, compelling evidence has demonstrated that abun-

dance fluctuations in the human gut microbiota aremainly due to

temporal stochasticity,44,45 and the human gut microbiota has
Cell Systems 14, February 15, 2023 137
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Figure 2. The human gut microbiome is
highly personalized and very stable
(A) The taxonomic profile of the human gut micro-
biome varies a lot across different individuals. Here,
the stacked bar chart demonstrates the phylum-
level gut microbial compositions of �200 healthy
adults in the HMP cohort.1

(B) The taxonomic profile of the human gut micro-
biome is highly dynamic but very stable. In the
absence of drastic interventions, the human gut
microbiome can be considered a dynamically
stable ecosystem, continually buffeted by internal
and external forces and recovering back toward
a conserved steady state.26 Here, the stacked
bar chart demonstrates the daily phylum-level
gut microbial compositions of a healthy adult
over �200 days in the moving picture study.27

Figure courtesy of Dr. Xu-Wen Wang.
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two distinct dynamic regimes: auto-regressive and non-autore-

gressive.26 In particular, most of the variance in gut microbial

time series is non-autoregressive and driven by external day-

to-day fluctuations in host and environmental factors (e.g.,

diet), with occasional internal autoregressive dynamics as the

system recovered from larger shocks (e.g., facultative anaerobe

blooms).26 Overall, the human gut microbiota (in the absence

of drastic interventions, e.g., repeated antibiotic treatments or

drastic diet changes) can be considered as a dynamically stable

system, continually buffeted by internal and external forces and

recovering back toward a conserved steady state (Figure 2B).26

Note that for some healthy reproductive-age women, their

vaginal microbial compositions changed markedly and rapidly

over time, which has been associated with their menstrual cy-

cle.46 The notion of stability or equilibrium does not apply to

this case (despite the metabolic functioning of the vaginal micro-

bial community was probably maintained). The importance of

long transients,47 sustained oscillations,48,49 or even chaos50 in

microbial communities on host health is largely unknown and

warrants further studies.

The stability or resilience of our gutmicrobiome against pertur-

bations has been attributed to its high level of functional redun-

dancy (FR).51–53 As a classical concept in community ecology,

FR means that phylogenetically unrelated taxa perform similar

functions in ecosystems so that they can be interchanged with

little impact on the overall ecosystem functioning.54–57 The roots

of FR extend back to the concept of ecological guilds,58 whereby

species are grouped together based on functional similarities in
138 Cell Systems 14, February 15, 2023
what they perform within communities.

Naturally, a high level of FR can be related

to the reliability with which an ecosystem

will continue to deliver services in the

face of moderate species loss.59,60 More-

over, an ecosystem with high FR will be

resistant to the addition of new species

because newly added species will very

likely be functionally similar to certain ex-

isting ones and hence fail in the competi-

tion with their functionally similar species,

rendering poor engraftment. This could

be evidence of the competitive exclusion

principle61 (only one species can occupy
an ecological niche in one location at any one time), although

this principle has often been challenged or reformulated (see

Wang and Liu62 and Dubinkina et al.63 and references therein).

For the human gut microbiome, compelling evidence of strong

FR has been demonstrated.1,52,64 For example, dietary carbohy-

drates can be processed by either Prevotella (from the phylum

Bacteroidetes) orRuminococcus (from the phylum Firmicutes).65

Short-chain fatty acids can be produced by multiple predomi-

nant genera: Phascolarctobacterium, Roseburia, Bacteroides,

Blautia, Faecalibacterium, Clostridium, Subdoligranulum, Rumi-

nococcus, and Coprococcus.66 An astonishing discovery from

the HMP is that despite the carriage of microbial taxa varies

tremendously across individuals, the gene compositions or func-

tional capacities remain highly conserved within a healthy popu-

lation, regardless of the body site.1 The finding implies for a

healthy human microbiota changing its taxa composition will

not drastically change its genetic potential or its overall meta-

bolic capacity.9 This is also a strong signal of FR.

Recently, a computational framework has been developed to

quantify the FR for any microbiome samples using the whole-

metagenome shotgun (WMS) sequencing data.53 This frame-

work is based on the genomic content network (GCN), a bipartite

graph that links microbes to the genes in their genomes. It was

reported that the GCN of the humanmicrobiome exhibits several

topological features (e.g., its strikingly nested structure) that

favor high FR because randomizing the GCN structure will signif-

icantly decrease FR.53 The GCN-based framework enabled us to

quantitatively test the intriguing relationship between the stability
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and FR of microbial communities. In particular, by analyzing

WMS data from two published FMT studies,67,68 it was found

that high FR of the recipient’s pre-FMTmicrobiota raises barriers

to donor microbiota engraftment.53 In a sense, the FR level of the

human microbiome may serve as a resilience indicator in

response to perturbations such as FMT.

There are two sides to the high FR of the human microbiome.

On one hand, high FR will help the human microbiome avoid

drastic functional impairment from moderate taxa loss. On

the other hand, it underscores the difficulty of manipulating

its composition and functioning. For example, in the case of

C. difficile infection, we want to decolonize the pathogen

C. difficile (a notorious bacterium that is well known for produc-

ing toxins and causing serious diarrheal infections) and hence re-

move the functioning of toxin generation of the community. In

this case, microbiome-based therapeutics, e.g., probiotic cock-

tails, have to be carefully designed because the external/exoge-

nous species cannot colonize a very stable ecosystem due to its

high FR and preoccupied ecological niches. If those exogenous

species cannot easily colonize our gut microbiota, we might

have to keep consuming them.

THEORETICAL PROGRESSES

Modeling framework
Mathematical models of microbial dynamics serve as the foun-

dation of designing any model-based control strategy to manip-

ulate the human microbiome. Different modeling frameworks

with different levels of complexity have been adopted from

macro-ecological systems or developed on purpose in the

past to describe the dynamics of microbial communities. In

this subsection, we will review those models and discuss the

tradeoff between model complexity and parametric uncertainty.

Not all the models discussed below are relevant to the central

theme of controlling the human microbiome for this review.

Some of the complicated and more mechanistic models were

actually developed for quite different purposes (e.g., explaining

generic ecological patterns observed in microbial communities).

Nevertheless, we introduce them here for the purpose of

completeness so that readers can appreciate the whole spec-

trum of model complexities and better understand the motiva-

tion of working on simpler models for control strategy design

(as discussed in section control strategy design) or even

completely model-free or data-driven approaches (as discussed

in section data-driven control).

Population-level models vs. individual-based models

Various modeling frameworks of microbial dynamics have been

developed.69,70 Basically, they can be classified into either PLMs

or individual-basedmodels (IBMs). As the name suggests, PLMs

directly describe the population changes of different microbial

species present in the community. Some PLMs also explicitly

model the abundance changes of abiotic resources (e.g., nutri-

ents) consumed/produced by microbial species or chemical

compounds thatmediate themicrobial interactions (see sections

mediator-explicit models and consumer-resource models).

PLMs can bewritten as either differential or difference equations,

depending on if time is treated as continuous or discrete. PLMs

can be applied to spatially homogeneous (or structured) environ-
ments using ordinary (or partial) differential equations (ODEs or

PDEs), respectively. Thanks to their simplicity (especially for

those PLMs that focus on the modeling of species population

changes only), PLMs have proven to be of immense value in

studying fundamental problems in microbial ecology and

modeling the human microbiome to inform microbiome-based

therapeutics design. Of course, PLMs have several intrinsic lim-

itations: they do not incorporate phenotypic heterogeneities,

adaptive processes, and interactions with the local biotic or

abiotic environment at the individual level.

IBMs are designed to resolve the limitations of PLMs.69 In

contrast to PLMs, IBMs do not describe changes on the popula-

tion level at all. Instead, theyonlydescribe the activities/properties

of individuals, as well as their interactions with the environment or

host. Thanks to remarkable technological advances in metage-

nomics, bioinformatics, and culturomics,71 we have accumulated

evermore properties and behaviors of individualmicroorganisms,

facilitating the development of IBMs to provide insights into

various emergent phenomena, e.g., self-organized spatial pat-

terns of biofilms,72 and the coevolution of the archaeal and bacte-

rial adaptive immunity system, CRISPR-Cas, and lytic viruses.73

Despite the success of IBMs in certain application scenarios and

the availability of generic open-source platforms for IBM (e.g.,

iDynoMiCS74), building IBMs for the humanmicrobiome to inform

microbiome-based therapeutics design can be a daunting task

due to (1) a huge number of model parameters that are often

difficult to infer from observed data; (2) many environmental vari-

ables (such as the concentrations of bacteriocins and nutrients)

are hard to measure in real time; and (3) spatial distribution of mi-

crobial species in certain body sites (e.g., gut) is hardly available.

In the following, we will review different PLMs that have been

heavily used to study microbial communities (including the hu-

man microbiome). Regarding the application of IBMs in studying

microbial sciences, we refer readers to Hellweger et al.69 and

Hellweger and Bucci75 for comprehensive reviews.

Population-level models: From simple to complex

Species-only models. When modeling a dynamical system, we

first need to decide how complex the model needs to be so as to

capture the phenomenon of interest. In the context of the human

microbiome, if we are just interested in exploring the impact that

any given species has on the abundance of other species and

predicting the abundance changes of microbial species present

in the community, it is sufficient to use species-only PLMs writ-

ten as a set of ODEs without assuming any spatial structure76,77:

_xiðtÞ = fiðxðtÞÞ;
i = 1;/; N. Here, fiðxðtÞÞ’s are some unspecified functions

characterizing the population dynamics of the community,

xðtÞ = ðx1ðtÞ;.; xNðtÞÞu ˛RN is an N-dimensional vector with

xiðtÞ denoting the abundance (or population density) of spe-

cies-i at time t. Here, we have implicitly assumed that chemical

compounds or resources that mediate the microbial interactions

rapidly reach steady state and hence can be mathematically

eliminated from the model.

We can further decompose fiðxðtÞÞ into the sum of intrinsic dy-

namics and microbial interactions. If we assume pairwise micro-

bial interactions, then the ODEs take the generic form of
_xiðtÞ = hiðxiðtÞÞ+

PN
j = 1aij gðxiðtÞ;xjðtÞÞ;
Cell Systems 14, February 15, 2023 139
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i = 1; /; N. The classical generalized Lotka-Volterra (GLV)

model is a representative species-only PLM with pairwise inter-

actions:

_xiðtÞ = xi

 
ri +

XN

j = 1
aij xj

!
;

i = 1;/;N. Here, r = ðriÞ˛RN is the intrinsic growth rate vec-

tor, A = ðaijÞ˛RN3N is the inter-species interaction matrix. Note

that themodel parameters (r,A) depend on both environment-in-

dependent factors (e.g., biochemical processes and metabolic

pathways) and environment-specific ones (e.g., pH, tempera-

ture, nutrient intake, and host immune system). Hence, environ-

mental (or host) factors are not explicitly considered here but are

absorbed in themodel parameters. Therefore, this is a ‘‘phenom-

enological’’ or effective model.

The key advantage of the phenomenological PLMs, especially

the GLV model, is its simplicity. In a sense, the GLV model is a

minimal dynamical systems model of microbial communities.

All the model parameters in the GLV model are relatively easy

to infer from temporal or steady-state data of the community

(given the data are informative enough, see section reconstruc-

tion of the ecological network).77–79 Hence, this modeling frame-

work is suitable for us to explore the impact that any given

species has on the abundance of other species and design

microbiome-based therapeutics (e.g., personalized probiotic

cocktails34) to achieve desired microbial compositions. Indeed,

the GLV model has been heavily used to model host-associated

microbial communities.77,78,80,81

It has been shown that for many commonly encountered mi-

crobial interactions traditional Lotka-Volterra pairwise interac-

tions may not be adequate.28 Furthermore, it was pointed out

that the GLV model does not have the necessary complexity to

explain a wide variety of independent growth outcomes.82 These

limitations might be due to multiple reasons. First, the steady-

state assumption of the chemical compounds (e.g., consumable

metabolites and reusable signaling molecules) that mediate the

inter-species interactions may be violated and hence should

be modeled explicitly. Second, it is likely that microbial interac-

tions occur in high-order combinations, whereby the interaction

between two species is modulated by one or more other spe-

cies.29 Indeed, a recent experiment on a well-controlled microbi-

al trophic chain has identified a higher-order interaction between

its species.30 In particular, it was observed that a single-celled

algae (Chlamydomonas reinhardtii) modulates the interaction be-

tween a predatory ciliate (Tetrahymena thermophila) and the

bacterium Escherichia coli. Directly incorporating higher-order

interactions into the species-only PLMs with pairwise interac-

tions, e.g., the GLV model, will lead to a very complicated model

in the form of

_xiðtÞ = xi

 
ri +

XN

j = 1
aij xj +

XN

j = 1

XN

k = 1
bijk xj xk + //

!
;

i = 1;/;N. The significant increase of the model parameters

will render the parameterization extremely challenging, espe-

cially in the absence of any a priori knowledge on the sparsity

of the model parameters.
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Mediator-explicit models. To remedy the inadequate pairwise

modeling approach and avoid directly modeling of higher-order

interactions, mediator-explicit models have been proposed.21,28

These models explicitly incorporate the production/release of

chemical compounds as well their consumption/degradation

by microbes. Each chemical compound in turn can facilitate or

inhibit the growth of microbes within the community. A general

mediator-explicit model can bewritten as a set of coupledODEs:8>>>><>>>>:
_xiðtÞ = xi

"
ri +
XM

a = 1

�
r+
ia

Ca

Ca +Kia

� r�ia
Ca

Kia

�#

_CaðtÞ =
XN

i = 1

�
pai � cai

Ca

Ca +Kia

�
xi

;

i = 1;/;N; a = 1;/;M: Here, xi still represents the abun-

dance of species-i, Ca is the concentration of chemical com-

pound-a, ri is the baseline growth rate of species-i in the

absence of chemically mediated interactions, r+
ia (or r�ia) repre-

sent the strength of facilitation (or inhibition) of compound-a on

the growth rate of species-i, Kia is the saturation concentration,

pai is the rate of production of compound-a per cell of species-i,

and cai is the maximum rate of consumption of compound-a per

cell of species-i. In the case of reusable mediators, microbes are

affected by the mediator but without considerably consuming or

degrading it (e.g., in response to a signaling molecule in quorum

sensing), we set cai = 0. Note that this model assumes the spe-

cies growth rate linearly drops as the inhibitor concentration in-

creases but saturates as the facilitator concentration increases

(in the Monod form Ca=ðCa +KiaÞ). More complicated formula-

tions of inhibitions (e.g., the inhibition threshold model and the

growth inhibition model) and facilitations (in a general saturating

form, i.e., the Moser form Cn
a=ðCn

a +Kn
iaÞ with n> 1) can be incor-

porated. This mediator-explicit model has been used to simulate

a typical experimental process of enrichment (where amulti-spe-

cies community is grown in excess shared resources and is peri-

odically diluted to a pre-determined threshold cell density). In

particular, it facilitates our understanding of how chemical-medi-

ated microbial interactions lead to coexistence when external

nutrients are replenished to be in excess.21

Parameterization of mediator-explicit models for large com-

munities (e.g., the human gut microbiome) is a big challenge.

Experimental characterization of the growth of microbial species

in the presence of different concentrations of chemical com-

pounds (including but not limited to metabolites) that stimulated

or inhibited their growth could be a very demanding task. In fact,

having a comprehensive catalog of those chemical mediators in

the human gut microbiome requires extensive experimental

efforts.

Consumer-resource models. The mediator-explicit model dis-

cussed in section mediator-explicit models can be considered

as a special type of consumer-resource model (CRM) in which

chemical mediators generated by species are modeled, but

external resources are not modeled since they are assumed to

be supplied in excess. To model all the resources explicitly, we

need to buildmore complex andmechanistic CRMs. The starting

point is MacArthur’s CRM83,84 where each of the N species

(‘‘consumers’’) can consume some ofM substitutable resources,

whose dynamics are described by a set of coupled ODEs:
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8>>><>>>:
_xiðtÞ = bi xi

 XM

a = 1
ciawaRa � mi

!

_Ra

�
t
�
= h
�
Ra

� �
XN

i = 1
xiciaRa

;

i = 1;/;N; a = 1;/;M:Here, xi is the abundance of species-

i,Ra is the abundance of resource-a,wa is the value of one unit of

resource-a to the consumer/species, and cia is the rate at which

species-i captures and consumes resource-a per unit abun-

dance of resource-a. Note that the matrix C = ðciaÞ˛RN3M is

often referred to as the consumer preferencematrix, which natu-

rally has a bipartite graph presentation.mi is the minimum main-

tenance energy required for the growth of species-i, bi is a factor

converting the resource excess into the per capita growth rate of

species-i. hðRaÞ is the intrinsic resource dynamics (which usually

takes the logistic form, i.e., raRað1 � Ra =KaÞ, representing lo-

gistic self-inhibition of resource-a by itself), and the term

xiciaRa represents the mortality of resource-a imposed by the

consumer species-i.

Note that in MacArthur’s CRM, different species may

consume the same type of resource, which naturally leads to

competition. In fact, one application of MacArthur’s CRM is to

derive the competition coefficients in the Lotka-Volterra compe-

tition equations. Indeed, if we assume the population dynamics

of resources are much faster than that of consumer species,

and we can insert the consumer-dependent equilibrium value

of Ra, i.e., R
�
a = Kað1 � PN

i = 1 cia xi =raÞ, into the ODE of xi,

rendering a competitive Lotka-Volterra equation: _xiðtÞ =
xiðri +

PN
j = 1aij xjÞ with ri = bið

PM
a = 1ciawaKa �miÞ and aij =

� bi

PM
a = 1ciacjawaKa=ra < 0.

To better describe microbial interactions (which are certainly

more diverse than competition), a more complicated CRM—mi-

crobial CRM (MiCRM) has been proposed recently.85–89 By intro-

ducing energetic fluxes and cross-feeding to the original

MacArthur’s CRM, MiCRM takes the form of
8>>><>>>:
_xiðtÞ = bi xi
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; i = 1;/;N; a = 1;/;M:
Here, we assume a fraction la of the energy imported by species-

i from resource-a is returned (‘‘leaked’’) to the community as

metabolic byproducts. d
ðiÞ
ab specifies the fraction of leaked en-

ergy from resource-b that is released in the form of resource-a

by species-i. By definition,
PM

a = 1d
ðiÞ
ab = 1. The matrix DðiÞ =

ðdðiÞ
abÞ˛RM3M is referred to as the stoichiometric metabolic ma-

trix of species-i.

MiCRM has been used to explain the emergent simplicity in

the assembly of hundreds of soil- and plant-derived micro-
biomes in well-controlled minimal synthetic media,87 as well as

various ecological patterns found in environmental and human

microbiomes, e.g., compositional gradients, dissimilarity/over-

lap correlations, richness/harshness correlations, and nested-

ness of community composition.85,88 Note that in all the previous

studies of MiCRM, model parameters were predetermined by

modelers rather than inferred from real data. Moreover, for

simplicity, it was often assumed that all species share a similar

core metabolism encoded in a universal stoichiometric meta-

bolic matrixD = ðdabÞ˛RM3M. This assumption significantly re-

duces the number of model parameters. Another limitation of

MiCRM (as well as MarArthur’s original CRM) is that it does not

explicitly model the case of reusable resources (e.g., signaling

molecules in quorum sensing, or antimicrobial metabolites

such as bacteriocins) that drastically affect the growth of mi-

crobes but are not considerably consumed or degraded by mi-

crobes.

Despite the success of random CRMs in reproducing experi-

mentally observed ecological patterns in various microbial com-

munities, they will in general fail to capture species level details,

unless all the model parameters are inferred from real data

(which is a daunting task by itself). Consequently, directly using

MiCRM to inform the design of microbiome-based therapeutics

(e.g., probiotic cocktails) would be very challenging, if not impos-

sible. After all, this type of models was not initially proposed for

this purpose.

Metabolic models

As discussed above, to capture the cross-feeding amongmicro-

bial species,MiCRMexplicitly models themetabolism of species

(although a convenient assumption, i.e., all species share a

similar core metabolism, is often made to reduce model param-

eters). Another big class of models, i.e., metabolic models, take

this step even further and have emerged as a valuable framework

for predicting, understanding and designing microbial commu-

nities. In particular, those models leverage metabolic networks

of microbial species to perform flux balance analysis (FBA) and
generate simulations of microbial species in molecularly com-

plex and spatially structured environments. Here, we briefly

introduce the key component of existing metabolic models,

i.e., FBA. As a constraint-based computational method in sys-

tems biology, FBA is used to predict the function or phenotype

of an organism by simulating its metabolism.90 The metabolic

network of an organism is represented by the stoichiometric ma-

trix S = ðsiaÞ˛RN3M, where sia represents the moles of metab-

olite-i consumed (sia < 0) or produced (sia > 0) by reaction-a, N

andM are the number ofmetabolites and reactions, respectively.
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A key assumption of FBA is that intracellular metabolism is at

steady state, i.e., S$v = 0, where v˛RM is the flux (i.e., reaction

rate) vector. This steady-state assumption can be motivated

from two different perspectives91: (1) one can argue that meta-

bolism is much faster than other cellular processes such as

gene expression. Hence, the steady-state assumption can be

considered as a quasi-steady-state approximation of the meta-

bolism that adapts to the changing cellular conditions. (2) In the

long run, no metabolite can accumulate or deplete. FBA com-

putes the flux vector v by optimizing an objective function repre-

sented in the form of a linear combination of the flux variables:

cuv (e.g., maximization of biomass yield) with certain capacity

constraints imposed by the lower and upper bounds on theM re-

actions, represented by two vectors l and u, respectively. Math-

ematically, this can be formalized as a linear programming

problem:

Maximize cuv

Subject to

(
S$v = 0

l% v%u

and solved with established efficient optimizers (e.g., Gurobi

and GNU Linear Programming Kit [GLPK]). Note that the search

for a set of fluxes that optimizes a given objective implies the

‘‘optimal regulation’’ hypothesis, i.e., the organism has evolved

to be able to regulate its metabolic fluxes to approach that opti-

mum under a set of environmental conditions.92,93

To consider the spatial structure of microbial communities, we

assume that the biomass of different species and the environ-

mental metabolites can propagate from its current position to

its neighborhood based on the physics laws of diffusion.

COmputation of Microbial Ecosystems in Time and Space92,93

(COMETS) and BacArena94 are two representative metabolic

modeling platforms. The former takes a population-level

approach, whereas the latter takes an individual-based

approach. Both platforms can be used to generate a novel hy-

pothesis concerning the metabolic interactions between mi-

crobes and investigate the importance of microbial geography

in community assembly (e.g., biofilm formation).

Despite the success of those metabolic modeling platforms,

we highlight a few limitations. First, the parameterization of

metabolic models is a big challenge. Indeed, to optimally employ

any metabolic model for any specific applications, users should

first determine whether genome-scale metabolic reconstruc-

tions of suitable quality for the microorganisms of interest are

currently available. For the human gut microbiome, it is worth-

while mentioning that AGORA (assembly of gut organisms

through reconstruction and analysis), a resource of genome-

scale metabolic reconstructions semi-automatically generated

for 773 human gut bacteria, was established in 2017.95 Recently,

AGORA has been expanded in both scope and coverage to

consist of microbial reconstructions for 7,206 strains, 1,644 spe-

cies, and 24 phyla.96 AGORA reconstructions could provide a

starting point for the generation of high-quality, manually curated

metabolic reconstructions. For the human oral microbiome,

thanks to the expanded Human Oral Microbiome Database

(eHOMD),97 the genome-scale metabolic reconstructions for

456 different microbial strains (from 371 different species, 124
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genera, 64 families, 35 orders, 22 classes, and 12 phyla) have

already been recently generated.98

Second, inputs of themetabolic models are sometimes hard to

access. Users need to have a good understanding of the

molecular composition of the environments or growth media of

interest. For simple synthetic communities cultured in well-

controlled laboratory conditions and relatively simple growthme-

dia, this is easy. But for complex multi-species communities with

a complex environment (e.g., the human gut microbiome with

complicated dietary information), this is really a big challenge.

Finally, as a key component inmetabolicmodels (regardless of

its population-level or individual-based nature), FBA has its own

intrinsic limitations. (1) The steady-state assumption of intracel-

lular metabolism is not necessarily true all the time, although a

mathematical foundation for the steady-state assumption for

long time periods has been proposed to justify its successful

use inmany applications.91 (2) The optimal regulation hypothesis

is not necessarily true. An anecdotal example is the soil bacteria

species Paenibacillus sp., which can modify its environmental

pH to such a degree that leads to the rapid extinction of the

whole population, a phenomenon coined as ecological suicide.99

How such self-inflicted death of microbes can exist without evo-

lution selecting against them is an outstanding question inmicro-

bial ecology.

Tradeoff: Model complexity vs. parametric uncertainty

How complex should a microbial dynamics model be? The

answer to this question certainly depends on the purpose of

the modeling efforts. Simple models (e.g., the GLV model with

only pairwise microbial interactions) are relatively easy to param-

eterize from existing microbiome data collected with existing

techniques. However, they are phenomenological or effective,

may not capture all the details of the microbial interactions

(such as higher-order interactions), and may completely ignore

the host-microbiome interactions. Complex models (e.g.,

MiCRM or COMETS) are more mechanistic, may capture char-

acteristics of various types of microbial interactions, and may

model the host-microbiome interactions and even the micro-

biome biogeography. However, they are often difficult to param-

etrize. Of course, they can be used to study general principles of

community assembly by sampling model parameters from

certain distributions. However, the same strategy will not allow

us to design microbiome-based therapeutics, e.g., a probiotic

cocktail that decolonizes a particular pathogen. Parameterizing

complex PLMs can be equally difficult as parameterizing IBMs.

For example, the state-of-the-art metabolic modeling platforms:

COMETS (which takes a population-level approach) and

BacArena (which takes an individual-based approach) require

almost the same amount of effort in parameterization. Both

require high-quality genome-scale metabolic reconstructions

of microbial species of interest. Recent advancements in

experimental microbiology and culture-independent sequence-

based metagenomics provide more data and lead to a better

understanding of individual species. This additional data and

knowledge could be used to build more complex and

mechanistic models of microbial communities. However, it is

questioned if this will always lead to better models for specific

purposes, e.g., inform the design of microbiome-based

therapeutics. After all, a model with higher complexity means

more parameters, which lead to a more difficult parametrization
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and are often considered as the main source of uncertainty in

modeling efforts.

A promising strategy is to ‘‘start complex and simplify later.’’

This strategy is based on the observation that some complex mi-

crobial communities appear to be at least partially ‘‘coarse-

grainable.’’100 In other words, some properties of interest can

be adequately described by effective models of dimension

much smaller than the number of interacting species. For

example, for industrial bioreactors consisting of hundreds of

species, their properties (e.g., nitrate removal and biomethane

production) can often be well described by models with fewer

than ten functional groups.101,102 Rigorously defining the

coarse-grainability of complex microbial communities and un-

derstanding the conditions for its emergence is a very intriguing

question. Recently, an inspiring theoretical framework was pro-

posed to begin addressing this question.100 In particular, a min-

imal model for investigating hierarchically structured ecosys-

tems within the framework of resource competition was

proposed and used to operationally define the coarse-graining

quality based on reproducibility of the outcomes of a specified

experiment. It was demonstrated that an ecosystem can be

coarse-grainable under one criterion but not coarse-grainable

at all under another criterion. Moreover, it was shown that a

high diversity of strains may actually enhance the coarse-grain-

ability. These results shed light on a theoretical understanding of

which ecosystem properties, and in which environmental condi-

tions, might be well described by coarse-grained models.

Consider the example of the human gut microbiome. Perhaps,

the exact geometry of the gut epithelium, the effect of flow and

peristaltic mixing, or the exact role of the vast diversity of unchar-

acterized chemical compounds (e.g., metabolites) might not be

as important as we would expect if we want to manipulate the

community composition and functioning.

Harnessing the coarse-grainability of the human gut micro-

biome is of critical importance for understanding, predicting, or

controlling the behavior of this complex ecosystem.100 For

example, inspired by the stablemarriage problem in game theory

and economics, a conceptual coarse-grainedmodel of microbial

communities was proposed.103 With a key assumption that mi-

crobes utilize nutrients one at a time while competing with

each other, this model can exhibit rich behaviors such as dy-

namic restructuring andmultiple stable states connected by a hi-

erarchical transition network. All of this complexity is encoded in

just two ranked tables (one with microbes’ nutrient preferences

and the other with their competitive abilities for different nutri-

ents), without assuming any other parameters. Leveraging this

highly coarse-grained model to design control strategies would

be a very interesting future direction.

Universality of microbial dynamics
As mentioned in section population-level models: from simple to

complex, if we are just interested in exploring the impact that any

given species has on the abundance of other species and pre-

dicting the abundance changes of microbial species present in

the community, it is sufficient to use species-only PLMs written

as a set of ODEs: _xiðtÞ = fiðxðtÞ;QÞwithout assuming any spatial

structure. Here, we have explicitly written down the set of model

parameters, denoted as Q, which depends on both environ-
ment/host-independent and environment/host-specific factors.

In general, the parameters Q estimated from a given habitat

with certain characteristic environmental conditions do not

necessarily map to other habitats with different environmental

conditions. For microbiome samples collected from the same

habitat (such as the human gut) but from different local commu-

nities (e.g., different hosts), are the ecological parameters Q

‘‘host-independent’’ or ‘‘host-specific’’?

Addressing this question is vital for developing microbiome-

based therapies. There are three basic scenarios: (1) Q’s are

strongly host-specific, then we have to design truly personalized

interventions: we need to consider not only the unique microbial

state of an individual but also the unique dynamic rules (encoded

by the host-specific Q) of the underlying microbial ecosystems.

(2)Q’s can be classified into a few groups, for which we need to

develop interventions based on group-specific dynamic rules. (3)

Q’s are host-independent or universal, the inter-personal vari-

ability stems solely from the different species collections. In

this case, we can design interventions based on universal dy-

namic rules to control the microbial state of different individuals

(although the interventions themselves, e.g., the recipes of the

probiotic cocktails, might be quite different for different individ-

uals due to the personalized baseline microbiomes).

A statistical method to detect universal dynamics

Directly addressing the universality question of microbial dy-

namics would require us to infer Q from high-quality temporal

data of each local community or host using system identification

techniques (see section methods based on longitudinal data).

Doing this for a large collection of local communities (hosts) is

both logistically and ethically challenging. Recently, an indirect

method called dissimilarity-overlap curve (DOC) analysis was

proposed.31 The DOC analysis relies on twomathematically inde-

pendent measures between any two microbiome samples (or

local communities): (1) overlap (O), which is the average relative

abundance of common species shared by the two communities;

and (2) dissimilarity (D), which is the dissimilarity between the re-

normalized abundance profiles of the common species. Note that

the renormalization of the common species’ abundance profiles

is necessary to ensure the independence of the two measures:

O and D. Hence, any dependency or relationship observed

from real data deserves a dynamical or ecological explanation.

The basic steps of the DOC analysis are as follows. (1) For a

given set of microbiome samples, we calculate the overlap and

dissimilarity of all the sample pairs and represent each sample

pair as a point in the dissimilarity-overlap plane. (2) Since the

exact relationship between those two measures is unknown,

we use a standard nonparametric regression method, i.e., the

robust locally weighted scatterplot smoothing (LOWESS)

method to create a smooth line through the scatter plot to sum-

marize a relationship and foresee the general trend, in a fashion

that makes few assumptions initially about the form or strength

of the D-O relationship. This gives us the DOC, representing

the average trend of the dependency between D and O. Finally,

to get the confidence interval of the DOC, we use the standard

bootstrap technique.

Mathematical basis of the DOC analysis

The DOCanalysis assumes the abundance profile of eachmicro-

biome sample represents (or at least approximates) the steady
Cell Systems 14, February 15, 2023 143
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state x� of the corresponding ecosystem (or local community),

i.e., it satisfies the steady-state equation f
�
x�;QðaÞ � = 0, where

a represents the sample ID. The DOC analysis is inspired by the

following observation: if twomicrobiome samples (local commu-

nities) that have the same species collection also have the same

abundance profile (steady state), i.e., O = 1 and D = 0 simulta-

neously, then the two communities should share universal micro-

bial dynamics fðx;QÞ characterized by the same set ofmodel pa-

rameters Q. This is because if x� satisfies both steady-state

equations: f
�
x�;Qð1Þ � = 0 and fðx�;Qð2ÞÞ = 0, then given the

large number of species and all the other levels of complexity

in their interactions encoded in the highly nonlinear function f,

we should have generically Qð1Þ = Qð2Þ except for some patho-

logical cases with Lebesgue measure zero.

In reality, the case of two samples having the same species

collection (O = 1) almost never happens for complex host-asso-

ciated microbial communities, such as the human gut micro-

biome, due to highly personalized microbial compositions.

However, we can take a leap of faith through interpolation: if we

observe a trend that steady-state sample pairs with higher O

tend to have lower D, i.e., there is a negative slope in the high-

overlap region of theDOC,we can argue that this trend is a strong

signal of host-independent model parametersQ, or equivalently,

universal microbial dynamics in species-only PLMs.

Caveats in detecting universal dynamics

We emphasize that detecting the universality (or host-indepen-

dency) of microbial dynamics makes sense only for simple

phenomenological species-only PLMs, which only model the

species dynamics and completely ignore the resource dynamics

and any environment/host factor. In a sense, phenomenological

species-only PLMs are coarse-grained models of complex

mechanistic models. Generally speaking, more complex models

are more likely to be universal. Indeed, for a mechanistic model

that explicitly models all the relevant state variables (e.g., spe-

cies abundances, resource concentrations, pH, temperature,

etc.), its model parameters (e.g., the rate at which species-i cap-

tures and consumes resource-a per unit abundance of resource-

a, the minimum maintenance energy required for the growth of

species-i, etc.) should simply depend on biochemistry and

hence are host-independent by definition. As discussed in sec-

tion tradeoff: model complexity vs. parametric uncertainty, this

modeling approach is challenging due to its parametrization

difficulty. Coarse-grained models are simpler and easier to

parameterize, but then we need to worry about the universality

of their dynamics. The tradeoff between the model complexity

and the universality of dynamics has to be carefully considered

in the modeling of the human microbiome.

Although the DOC analysis can be used to detect the univer-

sality of dynamics for species-only PLMs, caution is needed in

the application of DOC analysis and interpretation of its results.

First, themicrobiome samples should (at least roughly) represent

the steady states of the underlying ecosystem. For microbial

communities subject to strong environmental stochasticity and

demographic noise, the results of the DOCanalysis will bemean-

ingless. With cross-sectional data only, this steady-state

assumption is unfortunately hard to validate. Fortunately, previ-

ous studies based on longitudinal data analyses have reported

the long-term stability of human gut, oral, and skin microbiome
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for healthy adults.40,41 These findings justify the steady-state

assumption to some extent. Second, the DOC analysis implicitly

assumes that the true multi-stability does not exist. For complex

host-associated microbial communities, the presence of true

multi-stability is hard to validate (due to highly personalized

microbial compositions). For simple experimental in vitro com-

munities, the presence of true multi-stability is relatively easy

to validate.104 Third, the interpretation of the DOC analysis

should focus on the slope in the high-overlap region of the

DOC. Ideally, the highest overlap should be close to 1. If all the

sample pairs yield intermediate or very low overlap values,

then the DOC analysis is not very meaningful. Finally, the nega-

tive slope in the high-overlap region of the DOC is also consistent

with alternative hypotheses, such as communities assembling in

environmental gradients, or situations when only a small fraction

of samples have universal dynamics.105 To rule out the hypothe-

sis of environmental gradients, we need to systematically

analyze microbiome samples while controlling for the effect of

all the potential confounding factors. In the case of the human

gut microbiome, leading candidates of those factors include

age, race, body mass index, long-term dietary pattern, and

transit time through the gut (measured by stool consistency),

which has been considered in the original work on the DOC anal-

ysis.31 How to rule out the hypothesis of only a small fraction of

samples have universal dynamics (and hence largely contribute

to the negative slope in the high-overlap region of the DOC) is still

an open question.
Reconstruction of the ecological network
As discussed in section species-only models, if we assume

pairwise microbial interactions in a species-only PLM, the

ODEs of the system dynamics take the form of _xiðtÞ =

hiðxiÞ+
PN

j = 1aij gðxi;xjÞ, i = 1;/;N. Here, the inter-species inter-

action matrix A = ðaijÞ˛RN3N can be represented by an ecolog-

ical networkG ðAÞ = ðV ;E Þ: there is a directed edge ðj/iÞ˛E
if and only if aijs0. Here,V represents the set of all the species,

whereas E represents the set of all the edges. Hence, inferring

the interaction matrix from observed abundance data can be

considered a network reconstruction problem.106 In dynamical

systems and control theory, the art and science of buildingmath-

ematical models of dynamic systems from observed input-

output data is termed as system identification,107 which is a

more general task than network reconstruction.

Conceptually, there are two ways to infer the inter-species

interaction matrix: (1) bottom-up approach and (2) top-down

approach. For small synthetic communities, one can systemati-

cally performmonoculture and co-culture experiments to directly

quantify the impact of species-j on the growth of species-i and

hence estimate aij. This bottom-up approach has been applied

to infer inter-species interactions in a synthetic community

composed of 8 soil bacterial species,108 as well as a synthetic

community encompassing 12 prevalent human-associated intes-

tinal species.109 This approach is not feasible for large complex

communities for several reasons. First, many of the species in

complex communities (e.g., the human gut microbiome) cannot

be easily cultured in vitro. Second, if all the species can be

cultured in vitro, the total number of monoculture and co-culture

experiments NðN + 1Þ=2 increases rapidly as the number of
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species N increases. Finally, the inferred inter-species interac-

tions in vitro might not capture the inter-species interactions

in vivo.

For large complex communities, we have to rely on the top-

down approach, i.e., inferring the inter-species interactions

from (1) the informative longitudinal abundance data of the whole

community or (2) the steady-state abundance data of a large

number of sub-communities with different species assem-

blages. Here, the sub-communities are far more complicated

than mono-species and pairwise assemblages.

Methods based on longitudinal data

Many methods have been developed to infer inter-species inter-

actions and reconstruct the ecological network based on longi-

tudinal or time-resolved abundance data.77,78,81 Those methods

have demonstrated the capability to accurately forecast gut mi-

crobiota dynamics in mice77,78 and human studies.80 In partic-

ular, the open-source software package Microbial Dynamical

Systems Inference Engine (MDSINE) offers a suite of algorithms

for inferring dynamical systems models from microbiome time-

series data and predicting temporal behaviors.78

Key idea: Gradient matching. Those methods are typically

based on the extended GLV model that explicitly consider the

impact of various external stimuli or perturbations on the system

dynamics77:

_xiðtÞ = xi

 
ri +

XN

j = 1
aij xj +

XM

q = 1
biq uq

!
;

i = 1;/;N: Here, B = ðbiqÞ˛RN3M is the susceptibility matrix

with biq representing the stimulus strength of a perturbation uqðtÞ
on species-i. The perturbation uqðtÞ is binary valued, indicating if

the given perturbation is present at time t or not. This mimics

realistic perturbations from antibiotics or prebiotics, which can

inhibit or benefit the growth of certain microbes.

To estimate the model parametersQ = ðr;A;BÞ˛ RN3ð1+N+MÞ

from the longitudinal data fxiðtkÞ; uqðtkÞg at discrete time points

ðk = 0;1;/;TÞ, the ‘‘gradient matching’’ approach can be em-

ployed.78 The key idea is that if estimates of the gradient are avail-

able, parameters can be estimated by solving a system of equa-

tions rather than a system of differential equations. For the

extended GLV model, thanks to the linear functional response,

thegradientmatchingapproachcan reduce thesystemofdifferen-

tial equations into a system of linear equations, which enables

application of statistical models for linear regression.77 Indeed, if

wemove xiðtÞ to the left-hand sideof theODE, integrate both sides

over the time interval ½tk ; tk +1� and assume xiðtÞ and uqðtÞ are

roughly constant over the time interval, then we have

log xiðtk + 1Þ � log xiðtkÞ = 
ri +

XN

j = 1
aij xjðtkÞ +

XM

q = 1
biq uqðtkÞ

!
ðtk + 1 � tkÞ+ εiðtkÞ:

Here, εiðtkÞ represents the error arising from the approximation

of the integral by holding the integrand constant over the time in-

terval. Now, we define the scaled log-difference matrix Y =

ðyikÞ˛RN3Twith yik = ½log xiðtk + 1Þ � log xiðtkÞ�=ðtk +1 � tkÞ,
the time-series data matrix F = rowf4kg˛Rð1+N+MÞ3T with

4k = ð1; x1ðtkÞ;.; xNðtkÞ;u1ðtkÞ;.;uMðtkÞ Þu ˛Rð1+N+MÞ, and
the approximation error matrix E = ðeikÞ˛RN3T with eik =

ðεiðtkÞ =ðtk + 1 � tkÞÞ, we have a system of linear equations in

the following compact form:

Y = QF+E:

Parameter inferences. Since the number of equations N3T is

typically less than the number of unknowns N3 ð1 +N +MÞ,
the above system of linear equations is usually underdetermined.

Different algorithms have been developed to compute Q. They

can be classified as (1) maximum likelihood-based methods,

e.g., maximum likelihood ridge regression (MLRR)77 and

maximum likelihood constrained ridge regression (MLCRR)78

and (2) Bayesian dynamical systems inference methods,78 e.g.,

Bayesian adaptive Lasso (BAL), and Bayesian variable selection

(BVS). Note that Bayesian inference methods naturally offer two

additional functionalities that the maximum likelihood-based

methods do not, i.e., (1) estimation of confidence in model pa-

rameters Q and (2) statistical modeling of high-throughput

sequencing count-based data over time. We emphasize that

MLRR, MLCRR, and BAL all rely on regularization techniques

to reduce the overfitting issue, whereas BVS relies on variable

selection techniques110: it directly models the 0=1 pattern of

the inter-species interaction matrix A and the species-perturba-

tion susceptibility matrix B.

A benchmark study78 using simulated ground-truth data

demonstrated that MLCRR, BAL, and BVS outperform MLRR

on the following metrics: root-mean-square error (RMSE) for mi-

crobial growth rates (r), RMSE for microbial interaction parame-

ters (A), and RMSE for prediction of microbe trajectories on held-

out subjects given only initial microbe concentrations for the

held-out subject, and the area under the receiver operator curve

(AUROC) for reconstructing the underlying ecological network of

microbial interactions, i.e.,G ðAÞ. Moreover, the two Bayesian al-

gorithms (BAL and BVS) showed the greatest robustness to

lower sequencing depths and lower resolutions of temporal

sampling and demonstrated particularly strong performance

on inferring A and the underlying network G ðAÞ.
Caveats. Despite the success of existing methods in various

contexts, there are many caveats in inferring microbial dynamics

from longitudinal metagenomics data.111 Here, we list those ca-

veats and point out possible solutions.

First, we need to choose a proper dynamics model for the mi-

crobial ecosystem. Although existing methods typically rely on

the GLV model (to leverage its linear functional response that fa-

cilitates the gradient matching approach), it has been pointed

out that the GLV model may not be adequate enough to model

many commonly encountered microbial interactions.28 Even if

we just assume pairwise microbial interactions, the exact

functional response encoded in the function gðxi; xjÞ is largely un-
known. This challenge can be tackled through symbolic regres-

sion, a machine learning method that automatically infers both

the model structure and parameters from temporal data.112–115

A previous study using both synthetic and experimental data

demonstrated that combining symbolic regression with a ‘‘dic-

tionary’’ of possible ecological functional responses opens the

door to correctly reverse-engineering ecosystem dynamics.116

More efforts are needed to fully take advantage of the symbolic

regression technique to analyze longitudinal metagenomics data
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of complex microbial communities, such as the human gut mi-

crobiome.

Second, we need to collect informative temporal data to infer

model parameters. Note that the temporal data could be uninfor-

mative due to either low sampling rate or ‘‘unexcited’’ systemdy-

namics. In system identification literature,117 it is well known that

the degree to which estimated parameters converge to their true

values is highly correlated to the notion of persistent excitation,

which means that the measured experimental signals need to

be sufficiently ‘‘rich’’ (i.e., span the frequencies of dynamical in-

terest) if one is to expect good parameter convergence. For the

original GLV model, it has been shown that if the temporal data

are not informative enough (such that the persistent excitation

condition does not hold) indistinguishability will appear in the

sense that different model parameters can produce exactly the

same temporal data.118 In the same spirit, it has been pointed

out that even for the extended GLV model with external stimuli

or perturbations, accurate time-series prediction does not al-

ways imply accurate inference.111 Mathematically, by persistent

excitation of a signal vector vðtÞ, we mean that there exist strictly

positive constants a and T such that for any tR0,
R t +T
t vðtÞ

vuðtÞdtRaI, where T is called the excitation period of vðtÞ
and I is the identity matrix. In practice, we can define a measure

mPEðtÞ = lminf
R t
t� 1 vðtÞvuðtÞdtgto quantify the level of persis-

tent excitation, where lmin is shorthand for the minimum eigen-

value of the matrix. So far, this data informativeness issue has

not been seriously considered in inferring the dynamics of com-

plex microbial communities.

Third, the compositionality nature of the relative abundance

data will cause fundamental limitations in inference.111 We

know that the compositionality of relative abundance data will

not significantly alter the original absolute abundance data if

and only if the total microbial population is roughly time-

invariant, which is of course not necessarily true. Even if the

relative abundance data can approximate the original data, a

time-invariant total population will be linearly correlated with

the constant row in the time-series data matrix F, which will

introduce linear correlations of rows of F and hence lead to the

rank deficiency of FFu and drastically worsen the inference re-

sults. In addition to rank deficiency, compositionality will cause

another serious issue: distorting the original dynamics when

the total population is time variant. Indeed, metagenomic

sequencing data typically chart only the relative abundances of

taxa, but not their absolute amounts. If a species’ relative abun-

dance increases over time, we actually cannot determine

whether that species is blooming or other species are dying

out. For certain small laboratory-based microbial communities,

we can measure the absolute taxon abundances in a variety of

ways, e.g., selective plating,119 quantitative polymerase chain

reaction (qPCR),120 flow cytometry,121 and fluorescence in situ

hybridization (FISH).122 For large bacterial communities, the total

bacterial biomass can be measured by 16S rRNA qPCR using

universal primers.77,78 To quantify the absolute abundances of

bacteria, fungi, and archaea simultaneously within a microbiome

sample, a scalable cell-based multi-kingdom spike-in method

(MK-SpikeSeq) can be employed.123

Finally, grouping or ignoring low-abundance species lacks

justification. Since the number of equations is typically much
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smaller than the number of unknowns, many previous studies

group those low-abundance species together and treat them

as a pseudo-species.77,81,124 A numerical study demonstrated

that this approach does not work as well as we expected, espe-

cially when the low-abundance species are also strongly inter-

acting species (i.e., they interact strongly with their interacting

partners).111 Even in the absence of strongly interacting species,

the reconstructed network obtained by grouping some low-

abundance species can be misleading because grouping can

create false interactions between the grouped species and high-

ly abundant species. Hence, we emphasize that grouping low-

abundance species is not a solution to the underdetermined

problem. Generating informative temporal data with more time

points is the solution. There is no short cut or free lunch.

Steady-state data-based inference

Among all the caveats in inferring microbial dynamics from longi-

tudinal metagenomics data, the data informativeness issue is the

hardest one to resolve for the human microbiome. Indeed, any

attempt to improve the informativeness of longitudinal human

microbiome data is challenging and ethically questionable, as

it requires applying drastic and frequent perturbations to the mi-

crobiome, with unknown effects on the host. Note that naively

applying inference methods to longitudinal human microbiome

data collected in observational studies (i.e., without any drastic

interventions) is problematic. A previous attempt, using the

GLV model, has demonstrated that the inter-species interaction

matrix A inferred from the human gut microbiome time-series

data collected in observational studies is almost the same as

that inferred from the randomly shuffled time-series data where

temporality is completely removed.76 This finding simply implies

that the observed time-series data of the human gut microbiome

is not informative enough for dynamic inference purpose. This

finding is also consistent with our general understanding on

the stability of the human gut microbiome in the absence of

drastic interventions, as discussed in section challenge 3: our

microbiome is stable, functionally redundant, and likely difficult

to manipulate.

To circumvent the above fundamental limitation of inferringmi-

crobial dynamics from temporal data, one can assume the

observed microbiome samples (at least roughly) represent

different steady states of the underlying ecosystem and infer

the inter-species interactions from the difference between

those ‘‘steady states.’’79 This approach does not require any

external perturbations. In fact, for the human microbiome, this

approach leverages the fact that our microbiome is highly

personalized. Hence, microbiome samples (with presumably

very different species assemblages) collected from different

hosts serve as natural perturbation experiments of the underly-

ing ecosystem.

This inference approach based on steady-state comparison

actually has its root in inferring general dynamics on complex

networks.106 For microbial dynamics inference and network

reconstruction, this approachwas inspired by a theoretical study

on the ecological explanation of the ‘‘community types’’ (i.e.,

densely populated areas in the compositional landscape).76 In

particular, for the GLV model, it was found that if we introduce

a new species to a system at equilibrium, and if the new species

interacts with existing ones, then the new species will drive the

system to a new equilibrium. The strengths of the interactions
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between the new species and the existing ones are encoded in

the difference between the two equilibria.76

Mathematical basis. Consider a generic population dy-

namics model:

_xiðtÞ = xiðtÞ fiðxðtÞÞ;

i = 1;.;N: Here, we explicitly factor out xi to emphasize that

in the absence of species invasion ormigration, those initially ab-

sent or later extinct species will never be present in the microbial

community again. Mathematically, the inter-species interactions

are encoded by the matrix JðxÞ = ðJijðxðtÞÞÞ˛RN3N with

JijðxðtÞÞhvfiðxðtÞÞ=vxj. The condition JijðxðtÞÞ> 0(< 0 or = 0)

means that species-j promotes (inhibits or does not affect) the

growth of species-i, respectively. The diagonal terms JiiðxðtÞÞ
represent intra-species interactions.

Denote the set of observed steady-state samples as X .

Consider two steady-state samples xI and xK that share spe-

cies-i. We have fiðxIÞ = fiðxKÞ = 0. Here, the species index

sets I;K ˛ 2f1;/;Ng determine which species are present in the

samples. Denote JiðxÞ = vfiðxðtÞÞ=vx, representing the i-th row

of the matrix JðxÞ. Applying the mean value theorem for multi-

variable functions, we obtain

fi
�
xI
� � fi

�
xK
�
=

�Z 1

0

Ji

�
xI + s

�
xK � xI

��
ds

�

$
�
xI � xK

�
= 0:

This equation implies that the difference of any two steady-

state samples xI and xK sharing species-i will constrain the inte-

gral of Ji over the line segment joining them in RN. This is the

mathematical basis of inferring inter-species interactions from

steady-state comparisons.

The structure of the ecological network is encoded in the zero-

pattern of the matrix JðxðtÞÞ. Under a very mild assumption thatR 1
0 JijðxI + sðxK � xIÞÞds = 0 holds if and only if JijðxðtÞÞh 0, the

steady-state samples can be used to infer the zero-pattern of

JðxÞ, i.e., the structure of the ecological network, which is inter-

esting by itself and can be very useful in control theoretical anal-

ysis of microbial communities125 (see section a control theoret-

ical framework).

The ecological interaction types are encoded in the sign-

pattern of JðxÞ, denoted as sgnðJðxÞÞ. To infer sgnðJðxÞÞ, we

need to make an explicit assumption that sgnðJðxÞÞ = const

across all the observed steady-state samples. This assump-

tion might be violated if those steady-state samples were

collected from the microbial community under drastically

different environmental conditions (e.g., nutrient availabil-

ity126). In that case, inferring sgnðJðxÞÞ becomes an ill-defined

problem. Interestingly, this assumption can be easily falsified

by analyzing the observed steady-state samples because it

has been proved that if sgnðJðxÞÞ = const, then the true

multi-stability does not exist. Here, a community of N species

displays true multi-stability if there exists a subset of M (% N)

species that has multiple different steady states, where all the

M species have positive abundances and the other ðN �MÞ
species are absent. In practice, we can detect the presence

of true multi-stability by examining the collected steady-state
samples. If yes, then we know immediately that our assump-

tion that sgnðJðxÞÞ = const is invalid and we should only infer

the zero-pattern of JðxÞ. If no, then at least our assumption

is consistent with the collected steady-state samples, and

we can infer sgnðJðxÞÞ.
Inferring sign patterns. Here, we introduce themethodology for

inferring sgnðJðxÞÞ, which can be easily modified to infer the

zero-pattern of JðxÞ. The basic idea is as follows. Let I i be the

set of all steady-state samples sharing species-i. For any two

of those samples xI and xK , we can prove that the sign-pattern

of the i-th row of JðxÞ, denoted as a ternary vector

si ˛ f� ;0; + gN, is orthogonal to ðxI � xKÞ. If we compute the

sign-patterns of all vectors orthogonal to ðxI � xKÞ for all

I;K ˛ I i, then si must belong to the intersections of those

sign-patterns, denoted as cS i. As long as the number U of

steady-state samples in X is above certain threshold U�, thencS i will contain only three sign-patterns f � a;0;ag. To decide

which of these three sign patterns is the true one, we just need

to know the sign of only one non-zero interaction. If such prior

knowledge is unavailable, one can at least make a reasonable

assumption that sii = ‘‘� ,’’ i.e., the intra-species interaction Jii
is negative (which is often required for community stability). IfcS i has more than three sign-patterns, then the steady-state

data is not informative enough in the sense that all sign-patterns

in cS i are consistent with the data available in X . This situation

is not a limitation of the inference algorithm but of the data

itself. To uniquely determine the sign-pattern in such a situation,

one has to either collect more samples (thus increasing the

informativeness of X ) or use a priori knowledge of non-zero in-

teractions.

Extensive numerical simulations with species-only PLMs of

different levels of complexity indicate that the minimal sample

size U� required to obtain an accurate inference of sgnðJðxÞÞ
scales linearly with N. Note that for a microbial community of N

species, in the absence of true multi-stability, there are at most

Umax = ð2N � 1Þ possible steady-state samples. Hence, we

haveU�=Umax/0 asN increases. This suggests that as the num-

ber of species increases, the proportion of samples needed for

accurate inference actually decreases. This is a rather counter-

intuitive result because, instead of a ‘‘curse of dimensionality,’’

it suggests that a ‘‘blessing of dimensionality’’ exists when we

infer interaction types for microbial communities from steady-

state samples.

Inferring interaction strengths. To infer the inter-species inter-

action strengths, we have to choose a priori a population dy-

namics model for the microbial community. If we choose to

work with the GLVmodel, we have JðxÞ = A, which is a state-in-

dependent constant matrix. This considerably simplifies the

inference because

ai $
�
xI � xK

�
= 0;

for all I;K ˛ I i, where aihðai1;.; aiNÞ represents the i-th row of

A. This simple mathematical fact has an elegant geometric inter-

pretation: all steady-state samples containing species-i align

exactly onto a hyperplane, whose orthogonal vector is parallel

to ai that we aim to infer. This geometric interpretation can
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actually serve as a consistency check of the GLV model and the

observed steady-state samples.

Inferring interaction strengths for the GLV model from steady-

state data reduces to finding a ðN � 1Þ-dimensional hyperplane

that best fits the steady-state sample points fxI��I ˛I ig in the

N-dimensional state space. In order to exactly infer ai, it is neces-

sary to know the value of at least one non-zero element in ai, say,

aii. Otherwise, we can only determine the relative interaction

strengths by expressing aij in terms of aii. Once we obtain ai,

the intrinsic growth rate ri of species-i can be calculated by aver-

aging ð �ai$x
IÞ over all I˛I i, i.e., all the steady-state samples

containing species-i. In case the samples are not collected

exactly at steady states of the microbial community or there is

noise in abundance measurements, those samples containing

species-iwill not exactly align onto a hyperplane. A naive solution

is to find a hyperplane that minimizes its distance to those

noisy samples. However, this solution is prone to induce

false positive errors and will yield non-sparse solutions (corre-

sponding to very dense ecological networks). This issue can be

partly alleviated by introducing a Lasso regularization, implicitly

assuming that A is sparse. However, the classical Lasso regula-

rization may induce a high false discovery rate (FDR), meaning

that many zero interactions are inferred as non-zeros ones.

This drawback can be overcome by applying the Knockoff filter

procedure,127 allowing us to control the FDR below a desired

user-defined level.

Extensive numerical simulations with randomly selected sub-

communities indicate that for the GLV model the minimal

steady-state sample sizeU� required to obtain an accurate infer-

ence of A also scales linearly with N, indicating a blessing of

dimensionality. A recent work pointed out that we can actually

infer A using steady-state abundances from the Nmonocultures

and the N leave-one-out subcommunities.128 In other words, for

such well-chosen subcommunities, U� = 2N. Note that in the

classical experimental approach of studying inter-species inter-

actions, i.e., comparing steady-state abundances from the N

monocultures and the NðN � 1Þ=2 pairwise cocultures. In other

words, we have to collectU = NðN + 1Þ=2 steady-state samples.

For large N, this will be a daunting task.

Caveats. This blessing of dimensionality suggests that the

steady-state-based inference holds great promise for inferring

the ecological networks of large and complex microbial commu-

nities. However, there are several caveats. Here, we list those ca-

veats and point out possible solutions.

First, this approach requires the measurement of steady-state

samples and absolute species abundances. For microbial com-

munities that are under frequent and large perturbations, where

steady-state samples are hard to collect, this approach is not

applicable. For example, for certain reproductive-age women,

their vaginal microbial compositions change markedly and

rapidly over time.46 The collected samples certainly do not repre-

sent steady states. For the human gut microbiome, it is well

known that the gut microbial compositions of healthy adults

remain stable for months and possibly even years until a major

perturbation occurs through either antibiotic administration or

drastic dietary changes. Hence, the gut microbiome samples

collected from healthy adults very likely represent the steady

states of the underlying ecosystem. However, the stability of
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gut microbial compositions associated with various diseases re-

mains elusive. More studies are warranted.

Second, this approach implicitly assumes that different ste-

ady-state samples (or local communities) share universal mi-

crobial dynamics. In other words, those steady-state samples

represent different boundary equilibria of a population dy-

namics model. This assumption is necessary because other-

wise inferring microbial dynamics from steady-state samples

is an ill-defined problem. This assumption will be satisfied

when the samples were collected from similar environments.

For in vitro communities, the universal dynamics assumption

is satisfied if samples were collected from the same experiment

or multiple experiments but with very similar environmental

conditions. For in vivo communities, empirical evidence indi-

cates that the human gut and oral microbiota of healthy adults

display strong universal dynamics.31 However, the universality

of microbial dynamics in diseased microbiome has not been

fully understood.

Finally, to infer the inter-species interaction strengths, we have

to work with a particular population dynamics model, e.g., the

GLV model. Although there is a simple consistency check of

the GLV model and the observed steady-state samples, in

case the consistency check falsifies the GLV model, this

approach does not offer an alternative model to infer interaction

strengths but has to focus on the inference of interaction types,

i.e., sgnðJðxÞÞ. Other techniques would have to be utilized to infer

the dynamics model. For example, we can apply symbolic

regression techniques to those steady-state samples to infer

the dynamics model, leveraging the inferred interspecies inter-

action types. If we assume pairwise microbial interactions,

then, mathematically, this is equivalent to inferring the functional

form gðxi; xjÞ from a system of equations: ri +
PN

j = 1aij gðx�i ;x�j Þ =

0, with a prior knowledge of sgnðaijÞ.
Control strategy design
The ultimate proof of our understanding of the human micro-

biome is reflected in our ability to manipulate it for health ben-

efits. Once we have reconstructed the ecological network or

parameterized a reasonable dynamics model to mathemati-

cally describe the human microbiome as an ecological sys-

tem, we can leverage concepts and tools developed in

dynamical systems and control theory to design various con-

trol strategies.

A control theoretical framework

Recently, a theoretical framework for controlling complex micro-

bial communities toward desired states was developed125 (see

Figure 3). Here, a desired state can just be the baseline healthy

gut microbiome of an individual before her/his gut microbiome

was disrupted (e.g., by antibiotic administrations). This control

theoretical framework is based on the new notion of structural

accessibility, which allows us to use the ecological network of a

microbial community to identify minimum sets of its driver spe-

cies,whose abundancemanipulation can control thewhole com-

munity. Through numerical simulations, this framework has been

demonstrated for controlling the gut microbiota of gnotobiotic

mice infected with C. difficile and the core microbiota of the sea

sponge Ircinia oros. This framework offers a systematic pipeline

to drive complex microbial communities toward desired states.
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Figure 3. A control theoretical framework
(A) A toy community ofN = 3 species (green, yellow,
blue) with microbial interactions encoded in an
ecological network G . The controlled ecological

network G c contains one control input driving
species-3.
(B) Initial and desired abundance profiles shown in
stacked bars. The control objective is to steer the
community from the (undesired) initial state x0 to
the desired final state xd, represented by two
points in the state space of the system.
(C) In the continuous control scheme, the control
inputs uðtÞ are continuous signals modifying the
growth of the actuated species.
(D) In the impulsive control scheme, the control
inputs uðtÞ are impulses applied at the intervention
instants T = ft1; t2;/g, instantaneously changing
the abundance of the actuated species.
(E) A minimum set of driver species can be
identified from the ecological network G by
checking the graph-theoretical conditions of
structural accessibility. Here, we show an
ecological network involving the GnotoComplex
microflora (a mixture of human commensal
bacterial type strains) and C. difficile, inferred from
mouse data (assuming the GLV model). Red (or
blue) edges indicate the direct promotion (or
inhibition), respectively. The five driver species are
driven by five independent control inputs.
(F) Projection of the high-dimensional abundance
profiles (states of the microbial communities) into
their first three principal components (PCs). The
calculated control strategies applied to the driver
species succeed in driving the community to the
desired state, using either continuous or impulsive
control. Here, the controlled population dynamics
is simulated using the controlled GLV equations.
The intrinsic growth rates were adjusted such that
the community has an initial ‘‘diseased’’
equilibrium state x0 in which C. difficile is
overabundant compared with the rest of species.
We chose the desired state xd as another
equilibrium with a more balanced abundance
profile. Figure adapted and modified from Angulo
et al.125
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Modeling controlled microbial communities. Consider a gen-

eric species-only PLM _xðtÞ = fðxðtÞÞwith an unspecified function

f : RN/RN. Instead of knowing the exact functional form of f, we

assume we know its underlying ecological network G = ðV ;

E Þ, where V = fx1;/; xNg represents the set of N species

nodes, and there is a directed edge ðxj /xiÞ˛E if and only if

species-j has a direct ecological impact (i.e., direct promotion

or inhibition of growth) on species-i.

Controlling the microbial community consists in driving it

from an initial state (e.g., a ‘‘diseased’’ state) toward the

desired final state value (e.g., the ‘‘healthy’’ state). Consider

M control inputs uðtÞ˛RM directly applied to certain species.

This results in a controlled ecological network G c = ðV
WU ; E WB Þ, where U = fu1;/; uMg represents the set of

M control input nodes, and there is a directed edge

ðuj /xiÞ˛B if any only if the j-th control input ujðtÞ directly

control species-i. To model how the control inputs change

the species abundance, we consider two different control
schemes: continuous control and impul-

sive control. The continuous control

scheme models a combination of prebi-
otics (if ujðtÞ> 0) and bacteriostatic agents (if ujðtÞ< 0) as

continuous control inputs modifying the growth of the actu-

ated species:

_xðtÞ = fðxðtÞÞ+gðxðtÞÞ uðtÞ; t˛R:

The impulsive control scheme models a combination of trans-

plantations (if ujðtÞ> 0) and bactericides (if ujðtÞ< 0) applied at

discrete intervention instants T = ft1; t2;/g that instanta-

neously modify the abundance of the actuated species:�
_xðtÞ = fðxðtÞÞ; if t;T;

xðt + Þ = xðtÞ+gðxðtÞÞ uðtÞ; if t˛T:

The function g : RN/RN3M describes the direct susceptibility

of the species to the control actions. The j-th control input control

species-i if giju0.

Identify the driver species. If we have an independent control

input applied to each species (i.e., all species are directly
Cell Systems 14, February 15, 2023 149



ll
Review
controlled), of course the whole community can be driven to the

desired state. This is far from being efficient or necessary. In fact,

we can leverage the inter-species interactions encoded in the

ecological network G to identify minimum sets of species that

we need to manipulate in order to drive the whole community.

Those species are called ‘‘driver species.’’

To identify the driver species, we need to introduce the notion

of autonomous element, i.e., a constraint between some species

abundances that the control input cannot break, confining the

state of the community to a low-dimensional manifold. For

example, considering a three-species community with GLV

dynamics: _x1 = x1ð� 1 + x3Þ; _x2 = x2ð1 � x3Þ; _x3 = x3ð�
0:5 + 1:5x3Þ, if we only control species-3, we will have an auton-

omous element x = x1x2, because _x = _x1x2 + x1 _x2 = 0,

confining the whole community to a low-dimensional manifold:

fx ˛R3
��x1ðtÞx2ðtÞ = x1ð0Þx2ð0Þg for any control input. If we con-

trol both species-3 and species-1 (or species-2), we can elimi-

nate this autonomous element and hence control the whole sys-

tem. So, species-3 and species-1 (or species-2) form a set of

driver species.

In the general case of N species and M control inputs, we

define a set of controlled species as a set of driver species if

the corresponding controlled population dynamics ff;gg lacks

autonomous elements. Note that for linear systems ff; gg =

fAx;Bg, the absence of autonomous elements is equivalent to

their controllability, i.e., the ability to drive the system between

any two states in finite time, usually verified using Kalman’s con-

dition: rank½B;AB;.;AN� 1B� = N. For nonlinear systems, the

absence of autonomous elements defines the system’s accessi-

bility,129 which can be characterized using a mathematical

formalism based on differential one-forms.

In reality, it is difficult to parameterize ff;gg that precisely

models the controlled population dynamics of a microbial com-

munity. However, we can still leverage the structure of the

controlled ecological network of the community, i.e., G c, to

check whether the controlled system has autonomous elements

or not and use the ecological network G to identify a minimum

set of driver species. This is based on the notion of structural

accessibility, which can be considered as a nonlinear generaliza-

tion of structural controllability for linear systems.130 Indeed, for

linear systems _xðtÞ = A xðtÞ+B uðtÞ, it is often hard to precisely

measure the elements in A and B, but we can still use the struc-

ture of the controlled network G ðA;BÞ to check if the controlled

system is controllable or not,130 and use the network G ðAÞ to
identify a minimum set of driver nodes.131

Consider the class D of all possible controlled population dy-

namics models ff�;g�g that a controlled community can have

given we know its G c. We callD structurally accessible if almost

all of its basemodels ff�;g�g and almost all of their deformations

lack autonomous elements. Mathematically, this definition

means that except for some pathological cases with Lebesgue

measure zero, all the controlled population dynamics models

that the community may take have no autonomous elements. It

has been proven that, regardless of the control schemes (contin-

uous or impulsive), D is structurally accessible if and only if its

corresponding controlled network G c satisfies the following

two graph-theoretical conditions: (1) each species is the end-

node of a path that starts at a control input node; and (2) there
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is a disjoint union of cycles (excluding self-loops) and paths

that cover all species nodes. Surprisingly, the two graph-theoret-

ical conditions for structural accessibility are almost the same as

those for structural controllability. The key difference is that for

structural controllability self-loops (corresponding to intrinsic

nodal dynamics) can be used to satisfy condition (2). The

graph-theoretical conditions of structural accessibility enable

us to identify a minimum set of driver species efficiently from

the ecological network G .

We emphasize that the graph-theoretical conditions for the

structural accessibility in the continuous and the impulsive con-

trol schemes are identical. This implies that those two control

schemes can be equally effective. This result is really assuring,

because for the human microbiome, apparently impulsive con-

trol is much easier to implement than continuous control.

Calculate the control inputs. Once we have identified a mini-

mum set of driver species, we need to calculate the control in-

puts to be applied to driver species to steer the whole commu-

nity toward the desired state. It turns out it is more efficient to

calculate impulsive control inputs fuðtkÞ; tk ˛Tg, using the so-

called model predictive control (MPC) approach.132 Basically,

from the current state of the community xðtkÞ at tk ˛T, we predict

the sequence of states bXk;L = fbxðtk +1Þ;/; bxðtk + L+ 1Þg that the

community will take in response to a sequence of L impulsive

control inputs Uk;L = fuðtkÞ; /; uðtk + L� 1Þg, based on the

controlled population dynamics ff; gg. The prediction horizon

L> 0 determines how far into the future we predict, which can

be chosen based on ff; gg. Then, we choose uðtkÞ = u�
1ðtkÞ,

which is the first element of the optimal control sequence U�
k;L

calculated as:

U�
k;L = arg min

Uk;L ˛RM3L
Pxd ð bXk;L;Uk;LÞ subject to Uk;L ˛U:

Here, Pxd is the cost function penalizing deviations of the pre-

dicted trajectory bXk;L from the desired final state xd. For

example, we can define Pxd ð bXk;L; Uk;LÞ = kbxðtk + L+ 1Þ � xdk,
representing the deviations of the predicted final state from the

desired one.U4RM3L specifies constraints in the control inputs.

The above equation represents a finite-dimensional optimization

problem, which can be solved using algorithms like DIRECT

(DIviding RECTangles).133 By recalculating U�
k;L at each tk using

the actual state of the community, the MPC approach creates

a feedback loop enhancing its robustness against prediction

errors.

The above MPC approach has two limitations. First, it re-

quires detailed knowledge of the controlling population dy-

namics ff;gg, which is hard to parameterize for large complex

communities. Second, it requires us to solve a non-convex opti-

mization problem, which is quite challenging for large N or L.

These two limitations can be circumvented by leveraging

the controlled ecological network G c. In particular, we rewrite

ff;gg = fAx +wx;B +wug, where A˛RN3N is a weighted adja-

cency matrix of the ecological network G (i.e., a proxy of the in-

ter-species interaction matrix), B˛ f0;1gN3M is a proxy of the

susceptibility matrix, with bij = 1 if the j-th control input actuates

the i-th driver species. In a sense, fAx;Bg provides a prediction

of the community’s linear response to the control inputs, andwx
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and wu can be considered as perturbations. Using fAx;Bg, we

can design a linearMPC by solving the finite-dimensional optimi-

zation problem with the following quadratic cost function:

Pxd ð bXk;N;Uk;NÞ =
XN
i = k

½bxðtiÞ � xd�u

Q ½bxðtiÞ � xd�+uðtiÞu R uðtiÞ:

Here, the positive definite matrices Q = Qu ˛RN3N and R =

Ru ˛RM3M are design parameters. In particular, Q penalizes

the deviations of the predicted trajectory from the desired state,

whileR penalizes the control inputsmagnitude. Then, the optimi-

zation problem can be solved in closed form yielding the linear

MPC: uðtkÞ = K xðtkÞ; whereK ˛RM3N is the solution of a Riccati

equation. Since the Riccati equation can be efficiently solved for

large N, the linear MPC can be calculated for large communities.

Caveats. This theoretical framework allows us to systemati-

cally and efficiently control complex microbial communities to-

ward desired states. Despite the theoretical soundness, this

framework has several caveats. Here, we list those caveats

and point out possible solutions.

First, identifying thedriver speciesof amicrobial community re-

quires knowledgeof its underlyingecological networkG , which is

highly nontrivial to infer for complex communities due to data

informativeness issues (see section reconstruction of the ecolog-

ical network). Fortunately, it has been proven that once G c is

structurally accessible, it cannot lose its structural accessibility

with additional edges added to it. Hence, we can identify the

driver species from an ‘‘incomplete’’ ecological network (e.g.,

containing only high-confidence edges). Note that there could

be multiple different minimum sets of driver species for the

same ecological network. If the cost of choosing any species as

a driver species is known, a combinatorial optimization scheme

can be employed to select the best minimum driver species set.

Second, this framework is based on species-only PLMs,

which do not explicitly model the dynamics of resources pro-

vided to and/or chemicals produced by the microbial species.

For general resource-explicit PLMs, to identify their driver spe-

cies (which can drive the system to desired species abundance

profile), we need to analyze the notion of ‘‘output accessibility,’’

which characterizes the absence of autonomous elements in the

species dynamics and ignores autonomous elements in the

resource dynamics. Then, we need to extend the notion of output

accessibility to ‘‘structural output accessibility’’ (i.e., generic

output accessibility given an adequate base model), which

serves as a nonlinear counterpart of linear target controlla-

bility.134 Similarly, structural output accessibility could also allow

us to identify ‘‘driver resources’’ (which can drive the system to

desired resource concentration profile) by characterizing the

absence of autonomous elements in the resource dynamics

and ignoring autonomous elements in the species dynamics.

Third, for large communities with uncertain dynamics, the

linear MPC approach offers a robust and efficient way to calcu-

late the control inputs. However, its performance strongly de-

pends on the choice of ðA;BÞ and the distance to the desired

state. In general, the linear MPC is guaranteed to succeed only

if the desired state is ‘‘close enough’’ to the initial state. However,

how ‘‘close’’ or ‘‘far’’ to a desired state depends on how well the
linear dynamics fAx;Bg approximates the true controlled popu-

lation dynamics ff;gg of the community.

Finally, this control theoretical framework requires very

demanding control actions, e.g., increasing or decreasing the

abundance of the driver species to a desired level at a given

time. Those control actions are demanding because our control

objective (i.e., precisely steering the whole community from an

undesired/unhealthy state to a desired/healthy state) is very

ambitious. Those control actions might not be feasible in reality,

and implementing those actions requires detailed knowledge on

the susceptibility of species to the various control actions. More-

over, for the human gut microbiome, implementing those control

actions could be ethically questionable because they might

cause unintended consequences to the host. Numerical calcula-

tions have demonstrated that sometimes the control strategy

succeeds in a very counter-intuitive way: although the driver

species is more abundant in the final desired state than in the

initial state, the initial control action is actually to decrease its

abundance further.125

Practical control strategies

In most cases, controlling the human microbiome requires us to

solve a less ambitious task than precisely steering the whole

community to a desired state. For example, sometimes we just

want to decolonize a particular pathogen (e.g., C. difficile) or

steer the community to a particular community type (i.e., a

densely populated area in the compositional landscape). In

those cases, we can design more feasible control actions, e.g.,

a one-time transplantation of a well-defined consortium of spe-

cies (‘‘probiotic cocktail’’).

Switch between different community types. Microbiome-

based stratification of hosts into compositional categories,

referred to as ‘‘community types’’ (or ‘‘enterotypes’’ in the case

of gut microbiome), holds great promise for drastically improving

personalized medicine. For example, the notion of enterotypes

was originally proposed as distinct clusters in the compositional

landscape of human gut microbiome that might respond differ-

ently to diet and drug intake.135 Through standard cluster anal-

ysis, it was found that the gut microbial compositions of a human

population display three distinct clusters (enterotypes), and each

enterotype is a dominated by a particular genus (Bacteroides,

Prevotella, or Ruminococcus) but not affected by gender, age,

body mass index, or nationality of the host. However, a meta-

analysis revealed smooth abundance gradients of key genera

without discrete clustering of samples.136 Hence, enterotype

was a controversial concept as to whether human gut micro-

biome can be clustered into different types or just fall into a

continuous gradient. Nowadays we usually do not consider en-

terotypes as distinct clusters (‘‘islands’’), but just as densely

populated areas (‘‘peaks’’) in the compositional landscape.137,138

In principle, the presence of community types could be ex-

plained by different mechanisms, e.g., the presence of true

multi-stability139 or heterogeneous inter-species interactions.76

Although the notion of true multi-stability has been well dis-

cussed in macro-ecological systems, its detection in host-asso-

ciated microbial communities is rather difficult (see section chal-

lenge 2: Our microbiome is highly personalized) and has not

been demonstrated experimentally.32 Detection of heteroge-

neous inter-species interactions or the presence of strongly

interesting species (SIS) in the human gut microbiome has not
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been successful either, due to the data informativeness issue.76

Nevertheless, it has been numerically demonstrated that hetero-

geneity in the interspecific interactions or the presence of SISs is

sufficient to explain community types, independent of the to-

pology of the underlying ecological network. Moreover, by con-

trolling the presence or absence of these SISs, we can steer the

microbial community to any desired community type. This open-

loop control strategy still holds even when the community types

are not distinct but appear as dense regions within a continuous

gradient. The caveat is that target removal of those SISs could be

a highly non-trivial task by itself. We may not have the specific

narrow-spectrum antibiotics or phages that target each of those

SISs effectively.

Decolonize pathogens. FMT has been successfully used in the

treatment of recurrent C. difficile infection (rCDI).16,17,140–146

However, the potential long-term safety concerns147 and the

challenging donor recruitment and screening process148 have

significantly limited the use of FMT. The development of live bio-

therapeutic products (LBPs) containing only the effective com-

ponents of FMT would alleviate these drawbacks largely due

to the undefined nature of fecal preparations. However, such

formulations are highly non-trivial. Many attempts have failed

clinical trials.149 Recent clinical trials provided some exciting re-

sults.150,151 However, there is still much room for improvement.

For example, the primary efficacy objective of one of the trials

was to show the superiority of the developed LBP as compared

with the placebo in reducing the risk of CDI recurrence.151 It is

unclear if the developed LBP outperforms FMT. In another trial,

the LBP comprises 8 commensal Clostridia strains.150 It is un-

clear if this one-size-fits-all approach works for all patients

who presumably have very different baseline diseased micro-

biomes.

In order to decolonize a particular species (e.g., the pathogen

C. difficile) from a community, targeting microbes that directly

inhibit this species might have unintended consequences due

to the network effect (see section challenge 1: we do not know

the wiring diagram of this complex ecosystem). The complex

network structure needs to be accounted for to design probiotic

cocktails to decolonize a particular species from the microbial

community.

To quantify the network effect in microbial communities,34 let

us consider a metacommunity of N species labeled as U = f1;
.;Ng. We assume all samples or local communities obtained

from this metacommunity share universal population dynamics;

hence, different local communities just differ by their initial spe-

cies collections. Given a local community, labeled asu, let us as-

sume that its population dynamics is described by the GLV

model with AðuÞ = ðaðuÞij Þ˛Rn3n and rðuÞ = ðrðuÞi Þ˛Rn are the in-

ter-species interaction matrix and intrinsic species growth rate

vector of the local community u, respectively. Here n = juj de-
notes the cardinality of the set u. Consider two persisting spe-

cies i and j (i.e., both species have non-zero steady-state abun-

dances) in the local community u. We can define the net impact

of species-j on species-i in the local community u as the inde-

pendent contribution of species-j on the steady-state abun-

dance of species-i. In other words, we can write the steady-state

abundance of species-i as x
�ðuÞ
i =

P
j˛us

ðuÞ
ij , where s

ðuÞ
ij is the in-

dependent contribution (i.e., net impact) of species-j. For the
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GLV model, we have s
ðuÞ
ij hð�1Þi + j +1M

ðuÞ
ji r

ðuÞ
j =detðAðuÞÞ, where

M
ðuÞ
ji is the ðj;iÞ-minor of matrix AðuÞ, and detðAðuÞÞ is the determi-

nant of matrix AðuÞ. In particular, species j has a net inhibition

(promotion or null) effect on species i in the local community u

if s
ðuÞ
ij < 0 (> 0, or = 0, respectively). When the signs of a

ðuÞ
ij and

s
ðuÞ
ij are different, this indicates a strong network effect. Applying

this approach to two published microbial community data-

sets77,108 found evidence of strong network effects both

in vitro and in vivo.

Once we know the ecological network of a microbial commu-

nity, as well as the diseased state due to a particular pathogen X,

we can formalize an optimization problem to design a personal-

ized probiotic cocktail to decolonize X. The key idea is to calcu-

late the net impact of a tentative probiotic cocktail on the growth

of X and keep refining it by removing those species that could

have a positive net impact on the growth of X in the altered com-

munity.34 First, we form a tentative probiotic cocktail containing

all the effective inhibitors of X calculated from the global ecolog-

ical network G . Note that effective inhibitors include both direct

and indirect inhibitors. However, any species that already exists

in the patient’s diseased microbiota will be removed from the

initial cocktail. Second, for each species in the cocktail, we

numerically test if it is still an effective inhibitor (i.e., has a nega-

tive net impact on the growth of X) in the altered local community

(that contains all species in the patient’s diseased microbiota

and all species in the current cocktail). If yes, we keep it in the

cocktail; if no, we remove it. We repeat this process until all

the species in the cocktail are indeed effective inhibitors in

the altered local community. Finally, we are left with a minimal

set of species, i.e., the optimal probiotic cocktail, which can

effectively inhibit the growth of X for this particular disrupted mi-

crobiome (‘‘patient’’).

Applying the same algorithm to another patient, we will obtain

another optimal probiotic cocktail. Note that the two optimal pro-

biotic cocktails are naturally patient-specific or ‘‘personalized’’

because they are designed based on the present species in

each patient’s diseased microbiota.

Note that in case the global ecological network G of the meta-

community is unknown (which is unfortunately the case for the

human gut microbiome), we can leverage the ego network of X

to design a near-optimal personalized probiotic cocktail to

decolonize X. Here, the ego network of X consists of the focal

node/species (‘‘ego,’’ i.e., the pathogen X), those nodes/species

to which X directly interacts with (they are called ‘‘alters’’), the

links/interactions between X and its alters, as well as the links/in-

teractions among the alters. The algorithm to design a probiotic

cocktail based on the ego network of X is very similar to the

algorithm based on the global ecological network. The only dif-

ference is that we need to construct the initial tentative probiotic

cocktail based on the ego network, rather than the global

ecological network.

The above probiotic cocktail design strategy has been applied

to analyze the ecological network involving the so-called

GnotoComplex microflora (a mixture of human commensal bac-

terial type strains) and C. difficile34 (Figure 4). This network was

inferred from mouse experimental data78 with the assumption

that the microbial community follows the GLV model. Based on
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Figure 4. Personalized probiotic cocktails effectively decolonize C. difficile
(A) An ecological network involving the GnotoComplex microflora (a mixture of human commensal bacterial type strains) and C. difficilewas inferred frommouse
data. Red (or blue) edges indicate the direct promotion (or inhibition), respectively.
(B) A disrupted microbiota due to a hypothetic antibiotic administration.
(C) The restored microbiota due to the administration of a particular probiotic cocktail Rglobal .
(D) The trajectory of C. difficile abundance over three different time windows: (1) the initial healthy microbiota, (2) the disrupted microbiota, and (3) the microbiota
post probiotic administration. In the third timewindow, we compare the performance of various probiotic cocktails in terms of their ability to decolonizeC. difficile.
Those cocktails were designed by considering the global ecological network (Rglobal), the ego-network ofC. difficile (Rego), and randomly chosen subsets ofRglobal

(R1, R2 and R3). Rnear�optimal is obtained by excluding species-12 (i.e., K. oxytoca, which is an opportunistic pathogen) from Rglobal .
(E–H)We start from the same initial microbiota as shown in (A), but another hypothetic antibiotic administration leads to a different disrupted microbiota (F), which
can be restored through another probiotic cocktail (G). Performance of different probiotic cocktails in decolonizing C. difficile vary (H). Note that since the
disrupted microbiota (F) is different from that shown in (B), the optimal cocktail Rglobal in (H) is also different from that shown in (D). Figure adapted and modified
from Xiao et al.34
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the ecological network and the disrupted microbiota, we can

design probiotic cocktails to effectively decolonize C. difficile.

Numerical calculations demonstrated that the optimal probiotic

cocktailRglobal (designed based on the whole ecological network

and the specific disrupted microbiota) can strongly suppress the

abundance ofC. Difficile. Even the cocktail Rego designed based

on the ego-network ofC. difficile can suppress the abundance of

C. difficile to a much lower level than that of the diseased state.

Although the result is about an enteric pathogen, we believe that

it demonstrates the advantages of the network-based design of

probiotic cocktails in decolonizing generic pathogenic species

for other body sites, e.g., Streptococcus mutans in the oral

cavity.

This probiotic cocktail design strategy has a clear limitation.

The quantification of the net impact of a species on the growth

of the pathogen and the design of optimal personalized probiotic

cocktails are largely based on the GLV model (which assumes

linear functional response and pairwise microbial interactions).

For more complicated population dynamics models with a

nonlinear functional response or higher-order interactions, it is

still an open question how to analytically calculate the net impact.

OUTLOOK

Themodeling and control framework discussed in this article has

a strong flavor of community ecology, dynamical systems,

network science, and control theory. However, to fully harvest

the benefits of controlling the human microbiome, insights, and

tools from other disciplines will be very helpful. Here, we point

out a few promising directions that require interdisciplinary

synergy.
Toward more realistic control actions
In the control theoretical framework discussed in section a con-

trol theoretical framework, we considered four different control

actions (prebiotics and bacteriostatic agents that modify the

growth of the actuated species; probiotics and bactericides

that directly modify the abundance of the actuated species) to

steer microbial communities to desired compositions. In prac-

tice, the administration of prebiotics or probiotics or both (which

is often called synbiotics, i.e., the combination of prebiotics and

probiotics that work synergistically) is more realistic. How to

design control strategies based on a particular choice of control

action or a particular combination of them is an outstanding

question that merits further investigation. Given the existing

generic control theoretical framework, this presumably should

be a low-hanging fruit.

Integrate taxonomic and functional data
To design control strategies for the manipulation of microbial

compositions, current modeling frameworks of microbial com-

munities typically start with a minimal dynamical model of spe-

cies abundances to facilitate the parameterizing procedure,

which thus does not explicitly model any functional changes of

the communities. Further efforts should be dedicated to inte-

grate both taxonomic and functional data to provide more

comprehensive control strategies. For example, we can shift

the control goal from the manipulation of microbial compositions

to the manipulation of microbial functions (e.g., the secondary

bile acid metabolism, the production of certain short-chain fatty

acids, the digestion of lactose, and the generation of toxins).

How to design safe microbiome-based therapeutics (e.g.,

personalized synbiotics) to effectively manipulate microbial
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functions in the long run remains an open question. Metabolic

control analysis,152 a tool for designing strategies to manipulate

metabolic pathways, might be useful. The development of bio-

reaction control systems could also be inspirational, at least

from the conceptual perspective.153

Integrate microbiome and host data
All the modeling approaches discussed in section modeling

framework focus on the dynamics of the microbiome itself

and do not explicitly model the impact of microbial dynamics

on the host. Recently, a microbiome-immune system mathe-

matical model was proposed to describe the activation of reg-

ulatory T cells (Tregs) in response to colonization profiles of

Treg-stimulating Clostridia strains.154 This model integrates a

microbiome ecological model that describes the short and

long-term temporal dynamics of Clostridia strains in germ-

free mice78 and a microbiome-Treg model of CD4+FOXP3+

Treg activation in response to long-term compositions in the

microbiome. This pioneering work should inspire more research

activities to integrate microbiome and host data and to make

the control goals more host-oriented (i.e., maximizing a desired

host phenotype).

Data-driven control
Control strategies discussed in this review article are based on

certain population dynamics models. However, parameterizing

those dynamics models is a challenging task by itself. One way

to circumvent this intrinsic challenge of anymodel-based control

framework is to adopt a data-driven control framework.155,156

Facilitated by recent advances in machine learning and artificial

intelligence, data-driven control of dynamical systems has at-

tracted a great deal of research interest over the last few years.

In macro-ecosystem forecasting, the so-called empirical dy-

namic modeling (EDM) has been proposed as a data-driven (or

equation-free) alternative to imposed model equations and

offered more accurate and precise forecasts.157 For microbial

systems, the EDM approach has also been used to infer inter-

species interactions from longitudinal microbiome data.158

Recently, a deep-learning method (cNODEs, compositional neu-

ral ODEs) was developed to predict microbial composition from

steady-state species assemblage without assuming any micro-

bial dynamics.159 The long short-term memory (LSTM), a repre-

sentative type of recurrent neural networks capable of learning

order dependence in sequential or time-series data, has been

applied to longitudinal species abundance data of synthetic mi-

crobial communities and demonstrated better performance than

the GLV model in predicting species abundances.160 These

deep-learning approaches hold great promise in data-driven

control of the humanmicrobiome.We anticipate that data-driven

forecast and control of the human microbiome will be heavily

studied soon. Indeed, the unprecedented availability of metage-

nomics sequencing data offers a great opportunity for us to bet-

ter understand, predict, and, ultimately, control the behavior of

the human microbiome.

Experimental validation
Advances in culturomics71 will certainly facilitate the validation of

control strategies for in vitro synthetic communities. Several

in vitro continuous culture systems (e.g., SHIME,161 Simulator
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of the Human Intestinal Microbial Ecosystem; HuMiX,162 hu-

man-microbial crosstalk; and a human gut-on-a-chip microde-

vice163) have been developed. In particular, HuMiX and gut-on-

a-chip can model microbiota-host interactions. Those culture

systems would be extremely valuable to test control strategies,

despite the fact that an important challenge still lies in further

increasing their high-throughput analyses capacity.164 In a very

recent breakthrough, hCom1, a defined community of 104 gut

bacterial species, was first constructed and characterized

in vitro and then augmented in vivo (by filling open niches) to

form hCom2, a defined community of 119 species.165 Up to

our knowledge, this is the largest synthetic community designed

so far that can serve as a model system of the human gut micro-

biome. We expect that this work will not only enable us to test

many classical hypotheses in community ecology but also

trigger many mechanistic studies to reveal the critical roles of

the gut microbiome in human diseases. The ecology-based

in vivo augmentation strategy developed by the authors is very

insightful. It will inspire other researchers to design similar (and

perhaps even larger) synthetic communities to model the human

gut microbiome. Ultimately, we need carefully designed animal

experiments and clinical trials to validate those proposed control

strategies. Both pharmacokinetic and pharmacodynamics need

to be carefully studied.150 In the context of microbiome-based

therapeutics (e.g., a defined probiotic cocktail or more precisely

LBP), pharmacokinetics concerns the abundance of LBP strain

colonization, the proportion of LBP consortium strains colonizing

a given host, and persistence of LBP strain colonization,

whereas pharmacodynamics concerns the ecological impact

of the LBP on the host resident microbial communities.

Finally, we hope this review article will catalyze more collabo-

rative work between modelers, microbiologists, and clinicians.

Given the advances in various disciplines, we anticipate that

more interdisciplinary approaches will be developed to further

enhance our ability to control the human microbiome.
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