Mapping the ecological networks of microbial communities from steady-state data

Yandong Xiao^{1,2}, Marco Tulio Angulo^{3,4}, Jonathan Friedman⁵, Matthew K. Waldor^{6,7}, Scott T. Weiss¹, & Yang-Yu Liu^{1,8}

1 Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

2 Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha, Hunan, 410073, China.

3 Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla 76230, México. 4 National Council for Science and Technology (CONACyT), Mexico City 03940, México.

5 Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

6 Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

7 Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA. 8 Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115, USA.

Package: Mapping the ecological networks of microbial communities

Download: <u>NR_tutorial_1.1.zip</u> Last update: Feb 26 2018 Ref: Nature Communications 2017;8:2042 doi:10.1038/s41467-017-02090-2

The file NR_tutorial_1.1.zip contains:

1) "input":

"AllSteady_for_Brute.txt": steady-state samples from 7-species community (see Supplementary Note 6.2 for detailed description of this dataset). The file of "Tuple_6.txt" lists all the combinations of sign-patterns when the community only contains 7 species.

"AllSteady_for_Heuristic.txt": steady-state samples from 14-species community (see Supplementary Note 6.4 for detailed description of this dataset).

2) Matlab scripts for measuring the samples deviating from GLV and inferring zero-patterns, sign-patterns and interaction strengths.

"Deviation_from_GLV.m": The matlab code imports the steady-state data, and plot the R square of inferred hyperplanes.

"Infer_zero_pattern_Brute_force.m": The matlab code imports the steady-state data and other parameters described in the script, performs the inference of zero-patterns by brute-force method.

"Infer_zero_pattern_Heuristic_algorithm.m": The matlab code imports the steady-state data and other parameters described in the script, performs the inference of zero-patterns by heuristic method.

"Infer_sign_pattern_Brute_force.m": The matlab code imports the steady-state data and other parameters described in the script, performs the inference of sign-patterns by brute-force method.

"Infer_sign_pattern_Heuristic_algorithm.m": The matlab code imports the steady-state data and other parameters described in the script, performs the inference of sign-patterns by heuristic method.

"Infer_interaction_strengths.m": The matlab code imports the steady-state data and other parameters described in the script, performs the inference of interaction strengths. Note that this script requires the Matlab package of the Knockoff filter as provided in https://web.stanford.edu/~candes/Knockoffs/package_matlab.html.

3) "matlab_scripts" used by the script (The code was written on MATLAB R2014b).

Running the tutorial:

1) Extract the content of the enclosed "NR_tutorial_1.0.zip" file to a local directory.

2) Run the "Script_Infer_sign_pattern_Brute_force.m" for inferring the interaction types of a 7-species community.

3) Run the "Script_Infer_sign_pattern_Heuristic_algorithm.m" for inferring the interaction types of a 14-species community.