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Abstract

Real-world networks often consist of millions of heterogenous 
elements that interact at multiple timescales and length scales. The 
fields of statistical physics and control theory both contribute different 
perspectives for understanding, modelling and controlling these 
systems. To address real-world systems, more interaction between 
these fields and integration of new paradigms such as heterogeneity 
and multiple levels of representation will be necessary. It may be 
possible to expand models from statistical physics to integrate the 
notion of feedback (both positive and negative) and to extend control 
theory formulations to more mesoscopic analysis over averages of 
collections of degrees of freedom. There is also the need to integrate 
theoretical models, machine learning and data-driven control methods. 
We review recent progress and identify opportunities to help advance 
understanding and control of real-world systems from oscillator 
networks and social networks to biological and technological networks.
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and the potential lack of an epidemic threshold. Beyond degree distri-
bution, salient structural features of networks include small-worldness, 
modularity and triangular closure2 (Fig. 1).

In 2011, an important connection between statistical physics 
and control of complex networks was established to analytically 
study the controllability of a network ensemble with linear dynamics 
and arbitrary degree distributions3. This connection was built on the 
framework of structural control, introduced in the 1970s4, to solve 
for the controllability problem via graph-theoretical approaches in a 
network with linear dynamics. The problem is to determine whether 
control inputs exist that, when applied to some appropriately selected 
nodes (termed ‘driver nodes’3), allow one to steer its dynamics from 
any initial condition to any desired terminal condition in finite time 
(in other words, rendering it controllable). Crucial insights came from 
mapping the problem of identifying a minimum driver node set onto a 
maximum matching problem on the network (Fig. 2), which was then 
analytically solved using the cavity method from statistical physics 
(discussed in-depth in the section on ‘Statistical physics approaches’).

In structural control, only the structure (that is, the presence or 
absence of a connection between elements) matters, not the weight 
of each connection. Traditionally, the structural control framework 
assumes that the nodes evolve according to a linear time-invariant 
dynamics: t A t B txx xx uu˙( ) = ( ) + ( ) (see the section on ‘New paradigms and 
modelling techniques’ for details and extensions to nonlinear 
dynamics). This linearity means that the tools of linear algebra can be 
used to elucidate connections between network structure and control-
lability, including connections to phase transitions in network 
structure5,6. Also established is the controllability transition and the 
tradeoffs between nonlocality of the controlled state trajectories and 
nonlocality of control inputs7.

Beyond structural control, much research has gone into under-
standing control energy8, control profiles (based on control flow 
patterns)9 and constraints from real-world systems10. For compre-
hensive reviews, see refs. 11,12. For a comprehensive primer on control 
theory for physicists, see ref. 13. Yet how to extend the approaches from 
statistical physics to dynamical, out-of-equilibrium, nonlinear systems 
remains an open question.

Control theory overview
In the classic control paradigm, one senses and controls the behaviour 
of a particular system or device of interest, such as an automobile, an 
aeroplane or a robot. Control design often begins with a mathemati-
cal (or computational) representation of the structure and dynamics 
of a system of interest (also called a plant) and consists of synthesizing 
a feedback control strategy that by sensing what the plant is doing 
computes the required inputs to drive the plant to a desired state or 
behaviour. Negative feedback provides the ability to stabilize behav-
iours with some desired performance guaranteeing robustness even 
in the presence of noise, delays or perturbations. In contrast, positive 
feedback can be used, for example, to enable bi-stability and bifurca-
tions in a nonlinear system, allowing one to drive the system between 
multiple stable states.

Mathematical formulations for many classes of linear and nonlin-
ear systems have been developed along with their control strategies14. 
Many of these approaches are distributed and/or decentralized and 
some use sophisticated nonlinear, adaptive, computational and time-
varying approaches15. The focus is largely on individual systems, 
meaning that all the relevant degrees of freedom and their dynamics 
and couplings are known (Fig. 3a). This classical paradigm has been 

Introduction
Statistical physics is primarily concerned with equilibrium, macro-
scopic ensemble properties of a collection of elements and provides 
a framework for understanding and predicting the collective behav-
iours of massive numbers of simple, identical entities. Quintessential 
examples of such behaviours include the Maxwell–Boltzmann velocity 
distribution describing a gas of particles and the ferromagnetic phase 
transition when a material is cooled to the Curie temperature.

Conversely, control theory traditionally evolved as a branch of 
dynamical systems and engineering focused on finding methods to 
make a system or device behave autonomously in a desired manner 
robustly even in the presence of noise, delays and perturbations. It is 
concerned with devising feedback strategies to steer the dynamical 
behaviour of a system of interest towards some desired evolution, 
ideally via influencing relatively few microscopic degrees of freedom.

Given the massive scale of modern networks (such as the Internet 
or the human interactome), full knowledge of every degree of freedom 
and their interconnections may not be attainable — let alone exerting 
control over all of them. Thus, a partnership is needed between the 
macroscopic and the microscopic and between equilibrium and 
dynamical approaches to tame the behaviour of complex networks 
with complex nodes. We use the adjective ‘complex’ in the sense of 
complex systems, meaning potentially heterogeneous systems with 
nonlinear behaviours. Specifically, ‘complex network’ refers to the 
connectivity pattern between elements and ‘complex node’ refers to 
the nonlinear behaviour of individual elements.

This Perspective is organized as follows. We first provide context 
about the intersection of statistical physics of complex networks and 
control theory, of general feedback control theory and of challenges 
that arise from real-world networks. We then discuss existing methods 
and ideas from statistical physics and from control theory as applied to 
steering and controlling the behaviours of complex networks. We then 
present new approaches and modelling techniques that may prove 
fruitful. Finally, we conclude with a set of action items to help spark 
interdisciplinary progress.

Two fundamental concepts in control theory, controllability and 
observability, are used throughout, so we define their basic notions 
here. Controllability relates to the existence of control inputs able to 
steer a system from any initial condition to any desired terminal condi-
tion in finite time using only certain admissible manipulations. Observ-
ability is concerned with the ability to estimate the internal states of 
a system by measuring its inputs and outputs, typically identifying a 
subset of variables that carry enough information such that the whole 
system behaviour can be reconstructed from their measurement. Note, 
we use the term ‘control theory’ to refer to the body of work focused on 
the analysis and design of feedback systems to achieve a desired goal.

Background
Statistical physics and structural controllability
The late 1990s saw a rapid growth of the Internet and World Wide Web, 
an explosion of genomic data, the increasingly cyber-physical nature of 
infrastructure systems and the increasing globalization of economies. 
With that, a call grew for a general science of networks1. The tools of 
statistical physics, such as random graph models, generating functions 
and rate equations brought a wealth of understanding of the proper-
ties and behaviours of complex networks — often characterized by an 
underlying degree distribution that has a broad scale, spanning a few 
orders of magnitude. Key consequences of such a network structure are 
robustness to random node removal, vulnerability to targeted removal 
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consistently challenged by emerging applications that are instead 
characterized by large-scale collections of dynamical systems interact-
ing with each other over a web of complex interconnections (Fig. 3b). 
Controlling such complex networks to orchestrate their collective 
behaviour is now a core problem in control theory that is the subject of 
much ongoing research and goes back, for example, to the pioneering 
work by Šiljak in the late 1970s16. 

From a control viewpoint, complex networks are examples of 
large-scale dynamical systems consisting of many continuous-time 
or discrete-time units interacting over a network of interconnections 
that can be either static or time-varying16,17. The key issue becomes 
understanding whether a given network fulfils fundamental control 
properties such as controllability and observability, and how to close 
the feedback loop across the different scales (Fig. 4) as a feedback con-
nection needs to be established between the macroscopic behaviour 
of interest (such as consensus or synchronization) and the action 
necessary at the microscopic level to steer the resulting collective 
dynamics in a desired direction. Control can be achieved by controlling 
the nodes of the network, endowing the edges with some dynamics or 
communication protocol or manipulating the structure of the network 
itself or via a combination of these methods. One striking example is 
pinning control18–21, in which controlling a relatively small fraction of 
the network nodes or edges is sufficient to control collective behav-
iour of the system towards some reference equilibrium or asymptotic 
trajectory22,23. Yet, more progress is needed to design control strategies 
for general systems with a broader range of nodal dynamics, as, for 
example, when the network structure changes in times or evolves  
as a function of the nodal dynamics.

Control in the context of complex networks
A challenge for control posed by real-world networks across domains is 
that there can be behaviours and interactions at multiple length scales 
and timescales, including self-organizing behaviours, which can influ-
ence each other. In some instances, only the collective behaviour is of 
interest (say, the overall number of infected individuals); yet, in other 
instances, the microscopic details may be of interest (which specific 
people are infected). Likewise, there can be constraints on the ability 
to interact with the degrees of freedom both with respect to measure-
ment and to injecting control signals. Furthermore, it may be sufficient 
simply to control the system away from an undesirable state (such as 
system collapse) or towards an ensemble of desirable states, as opposed 
to controlling the system to a specific state. In-depth discussions on 
the challenges imposed from high-dimensionality, nonlinearity and 
constraints in interventions for real-world systems can be found in 
refs. 10,24,25.

There can be ambiguity about the network itself. In a brain net-
work, nodes can be defined at the level of individual neurons, patches 
of neurons or even brain regions spanning large collections of neurons. 
With respect to interactions between nodes, learning the connectivity 
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Fig. 1 | Common elements found in complex networks. a, Broad-scale 
distributions (P) of node degrees (k). b, Clustering with neighbours. c, Community  
structure: nodes can be allocated to groups for which the density of connections 
within a group is higher than the density of connections between groups. d, Small- 
world properties: most nodes are not nearest neighbours but are linked by short 
paths on the network. e, Phase transitions, such as the percolation transition in 
which the fractional size S of the largest connected component of the network 
exhibits a phase transition as the average degree increases.
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pattern (that is, the ‘wiring diagram’) may require costly experiments 
and it may not be possible to learn the full connectivity pattern. Note 
that the presence or absence of a single edge can have pronounced 
consequences for properties such as betweenness centrality. Moreo-
ver, the dynamical activity taking place on the network can be equally 
important as the topology. For instance, in traffic networks, it is both 
the flows on the network and the network topology that determine 
congestion patterns. It is also the case that emergent long-range order 
can arise from the interplay of the nodal dynamics and the network 
structure26,27.

To incorporate heterogeneity and multiple scales means that dif-
ferent parts of the system may need different types of representation. 
Some aspects might be best modelled with discrete time dynamics, 
whereas others with continuous time. Ordinary differential equations 
(ODEs) may best represent some aspects; partial differential equa-
tions (PDEs) may better describe other aspects. For example, in traffic 
management applications, ODEs can be used to describe the fluid 

motion of cars, whereas PDEs might better model the flow of vehicles 
controlled via traffic lights or other inputs that act at the agent level. 
How to integrate such analysis is an open question, as is the role of noise 
and uncertainty. Finally, application domains are as diverse as electric 
power grids, social networks and biological systems, each with distinct 
objectives and constraints, meaning that one must be careful to choose 
an appropriate modelling paradigm.

Key questions are what elements to measure, what elements to 
influence, when to influence them and how to influence them. In addi-
tion, it is crucial to develop methods to appropriately study conver-
gence to the desired behaviour and the robustness and resilience of 
control strategies for complex networks.

Existing modelling paradigms
Statistical physics approaches
Notions and techniques rooted in statistical physics have been heavily 
leveraged to study both structural and dynamical properties of complex 
networks2,28,29. Areas of study include network growth, phase transitions 
and cascading failures, all of which are essential behaviours displayed 
by complex networks. Studies into controlling these behaviours from 
the statistical physics perspective are not about control in the strict 
sense of satisfying a controllability property but more about steering 
the system: for instance, steering it away from a tipping point or towards 
smaller failures. Direct applications of statistical physics tools to study 
traditional control properties of complex networks pertain primarily 
to controllability and observability. We discuss these topics next and 
provide a summary of methods in Table 1.

To study the growth of complex networks, in particular scale-free 
networks30 notable for their power-law degree distribution, many 
analytical approaches with strong statistical physics flavour have 
been developed, such as continuum theory31, the master-equation 
approach32 and the rate-equation approach33.

A core element of statistical physics is the study of phase tran-
sitions — the phenomenon of a strong change in the macroscopic 
behaviour of a system in response to a small change in an external 
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Fig. 2 | Identification of driver nodes and phase transition in the structural 
control framework. a, Solving the maximum matching problem on a 
directed network with linear nodal dynamics (of the state variables xi’s) 
enables identification of the minimum driver node set to ensure the structural 
controllability of the whole system. For a general directed network (top panel), 
there could be multiple maximum matchings (sets of red links). Hence, one can 
identify multiple minimum driver node sets (blue nodes). To each driver node, 
one must apply a unique control signal (ui, blue squiggly arrows) necessary to 
ensure structural controllability. b, Control robustness and core percolation. 
One can quantify the robustness of control under unavoidable link failure by 
computing the fraction l of links that are: critical (lc), if in its absence one must 
increase the number of driver nodes to maintain full control over the system 
(in other words, a critical link is part of all maximum matchings of the network); 
redundant (lr), if it can be removed without affecting the current set of driver 
nodes (that is, it does not belong to any maximum matching); and ordinary (lo), 
if it is neither critical nor redundant (it appears in some but not all maximum 
matchings). The non-monotonic behaviour of lr as a function of mean degree 〈k〉 
(upper part) is closely related to the core percolation transition on the networks 
(lower part), where ncore is the fraction of nodes in the core. The core percolation 
occurs where the number of distinct maximum matchings starts increasing 
exponentially, which renders the fraction of redundant links decreased. For 
directed Erdős–Rényi random networks, the core percolation occurs at 〈k〉 = 2e 
(lower part). Figure adapted with permission from ref. 3, Springer Nature Ltd.
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control parameter at the critical point34. In the context of networks, 
an example of a phase transition is the percolation phase transition 
(Fig. 1e), which can be analysed using random graph models35. These 
models are based in the concept of a statistical ensemble, which is at 
the root of statistical physics.

A statistical ensemble of networks considers a given set of proper-
ties, such as a prescribed degree distribution. Each ensemble member 
is a realization of a network with a particular configuration of nodes 
and links and is attributed some probability (that is, statistical weight). 
All aspects other than the given set of properties are assumed to be 
completely random, thus they can be averaged over the entire ensemble 
by using some mean-field approaches, such as the generating function  
formalism36,37 based on the branching process and the tree ansatz.

The percolation phase transition describes the sudden onset of 
large-scale connectivity in a network, and small interventions during 
the growth of connections can allow one to control the location of the 
critical point and can lead to explosive percolation38,39. For critical 
transitions, it has been shown that the predicted increase in fluctua-
tions and autocorrelation times as a system reaches its ‘tipping point’ 
can serve as early warning signs40,41.

A theoretical underpinning for the study of self-organization in 
statistical physics is the paradigm of self-organized criticality42 (SOC). 
In SOC, the balance of competing forces, such as driving and dissipa-
tion, tunes the system to a critical point leading to cascading failures 
that follow a power-law distribution in size and are hence unbounded. 
Such cascading failures are a hallmark of complex networks such as 
power grids and brain networks43. Controlling SOC through the nature 
of the driving force is an important theme in the statistical physics 
literature44–47, with more recent focus on ‘dragon king’ events48–51.

Direct applications of statistical physics tools to controllability 
and observability do exist. When the control properties can be studied 
purely from the structure (or connectivity pattern) of the network, 
there are several successes.

One striking example is the application of the cavity method to 
solve structural control problems3. Owing to the graphical interpreta-
tion of the structural controllability theorem4, one can check whether 
a network is structurally controllable by simply inspecting its struc-
ture, avoiding expensive matrix operations that rely on detailed edge 
weights. In particular, one can identify a minimum set of nodes termed 
as driver nodes, the time-dependent control of which is sufficient to 
fully control the entire dynamics of the system. This identification 
can be achieved by mapping the structural control problem into a 
purely graph-theoretical problem called maximum matching52–54. 
Leveraging the cavity method55–57 rooted in statistical physics (and 
its further application in solving the maximum matching problem58), 
certain control properties of a network ensemble with a prescribed 
degree distribution can be analytically calculated3. Those properties 
include: the size of the maximum matching, which is directly related 
to the minimum number of driver nodes (or control inputs) to ensure 
structural controllability; and the total number of distinct maximum 
matchings, which is directly related to the number of different control 
configurations and hence affects the control robustness.

Another success is in the study of observability in the electric 
power grid. In this system, the voltages of nodes — which can be used as 
state variables — can be determined using phasor measurement units 
(PMUs). A PMU measures the real-time voltage and line currents of its 
corresponding node, thus a PMU determines the state variable of not 
only the node it is placed on but also all its first-nearest neighbours. 
In this case, the observability problem can be mapped to a purely 

graph-theoretical problem. Indeed, the random placement of PMUs 
leads to a network observability transition59, which can be analytically 
studied using the generating function formalism36,37. Moreover, the 
problem of identifying the minimum set of sensor nodes (that is, PMUs) 
in a power grid can be mapped to a classical graph-theoretical problem: 
the minimum dominating set problem. Despite its nondeterministic 
polynomial time (NP)-hard nature in general, the minimum dominating 
set problem can be solved by a message-passing algorithm (rooted in 
spin glass theory), which offers nearly optimal solutions and performs 
well on real-world networks60.

The power of mapping a control problem to a purely graph- 
theoretical problem is also naturally an intrinsic limitation. Any control 
property, such as the control energy cost, that requires detailed 
knowledge beyond network structure will not benefit from the purely 
graphical interpretation and the corresponding statistical ensemble 
approach. Techniques in random matrix theory61 that can directly 
handle edge weights of complex networks might have to be used to 
develop an appropriate network ensemble. In general, both the detailed 
structure and the dynamics matter62.

b  Network control paradigm

a  Classical control paradigm
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ActuatorsController
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System

ŷ

Network
agents
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Fig. 3 | Control paradigms. a, The classic feedback control paradigm in which the 
output (y) of the system to be controlled is measured or estimated by sensors. 
The measured output (yŷ) is then fed back into a ‘comparator’ node (dark grey 
circle) that measures the difference between (yŷ) and the reference signal (Ref). 
That control error (e) is then fed to the controller that computes the control input 
(uû) according to some control law. The computed input is then implemented in 
the actual input (u) to the system via a set of actuators. In this situation, all the 
relevant degrees of freedom and their couplings are known. b, A distributed  
and decentralized pinning control strategy. Some of the network agents  
(yellow circles) send information (blue arrows) about their states or outputs to 
controllers (pink squares). The controllers cooperate (black edges) to formulate 
a network control strategy and then intervene on the behaviour of a fraction of 
appropriately selected agents in the network (red arrows) to achieve some 
desired collective behaviour. Figure courtesy of Davide Salzano.
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Control theory approaches
Control theory approaches were traditionally developed for analys-
ing and steering the behaviour of a specified system. Regardless, the 
problem in control can be distilled into determining what needs to 
be sensed, what needs to be controlled and how the information being 
sensed should be used to achieve the desired goal. Thus, the three 
key ingredients of any control design are sensing, computation and 
actuation14. Some methods are summarized in Table 2.

Typical control goals in multi-agent systems include consen-
sus63–71, which is the convergence of all units towards a common equi-
librium point, and synchronization72–75, which is the convergence to an 
asymptotic time-varying solution. They also include, among others, 
formation control76–78, pattern formation79 and coordinated motion 
of agents (such as flocking)80. The goal is often formulated in terms of 
performance (focused on transient properties such as settling time, 
rise time and overshoot, for example), stability (such as convergence 
to an equilibrium or a manifold in state space) and robustness to noise 
and external perturbations14.

Starting from a mathematical (or data-driven) model of the sys-
tem and a control goal, one can attempt to: establish controllability 
and observability of the system of interest; devise a control strategy and 
certify that the control strategy guarantees convergence and stability 
of the desired behaviour by means of appropriate rigorous proofs of 
these properties in the closed-loop network system (Fig. 5). Typically, 
when dealing with multi-agent systems, the focus is on devising strate-
gies that are distributed and decentralized so that sensing, actuation 
and control inputs do not need to be decided in a centralized manner. 
Open-loop strategies, which do not rely on feedback from the sensors, 
are also a solution to some control problems, but typically fail to fulfil 
stability and performance requirements in the presence of perturba-
tions and therefore lack robustness. Thus, we focus on closed-loop 
feedback strategies in this Perspective.

The controllability problem is an existence problem aimed at 
establishing which nodes need to be controlled to steer the collective 
behaviour, given the network structure, the dynamics of agents and 
the interaction protocol on the edges. Approaches to solve this prob-
lem in the context of complex networks include the use of structural 
controllability and the use of controllability Gramians81–85, for example. 

Despite notable advances in the past decade, many open problems 
remain. Examples include understanding controllability in networks 
of nonlinear or time-varying systems or when the network structure 
evolves in time or as a function of the dynamics taking place over it 
(state-dependent network evolution).

The observability problem is aimed at understanding which vari-
ables carry enough information such that the whole system behaviour 
can be reconstructed from their measurement. Assessing observability 
becomes cumbersome when applied to large-scale complex networks 
as it entails deciding which behaviours of agents must be measured to 
reconstruct the overall network dynamics. Again, approaches from 
control such as structural observability theory have been used to this 
aim82,86–88. But many problems remain open, such as studying observ-
ability in time-varying network structures of nonlinear dynamical 
systems.

Controllability and observability criteria for complex networks 
have a twist compared with those of more traditional control theoretic 
approaches, in that graph-theoretical tools can be used to comple-
ment and enhance criteria on the basis of algebra or geometry. This 
crucial direction was first recognized in the early work by Šiljak16 in 
the late 1970s and further developed in later work82; it can provide a 
viable option for dealing with large numbers of interacting dynami-
cal variables. (We note that using graph-theoretical methods to study 
network problems dates back at least to the mathematical sociology 
community in the 1960s89).

If the fundamental properties of the system of interest have been 
analysed, a feedback control strategy (that is, a closed-loop strategy) 
can then be devised to achieve the control goal by exploiting the sensed 
information from the network and attempting to steer the system via 
control inputs. A fundamental issue in validating the control strategy 
is to analyse and prove convergence of the controlled network system 
starting from different initial conditions (stability) and under external 
perturbations (robustness). Approaches to study stability and robust-
ness of complex networks of dynamical systems have been developed 
or extended from those available for homogeneous systems (for a 
review of some available methods, see refs. 17,21–23,90–95).

With respect to stability, approaches to study local or global sta-
bility of a given complex network system include those in which the 

Control
strategy

r

Emergent
collective
behaviour

Cluster1
Cluster2

Macroscopic scale

Mesoscopic scale

Microscopic scale

Fig. 4 | Closing the feedback loop in complex 
networks entails sensing, computing and 
actuating at different scales. Sensing and actuation 
can be performed at any of the scales depicted in 
the diagram. In this figure, we depict a centralized 
control strategy for simplicity; however, when 
dealing with network systems, the control strategy 
will typically be distributed and decentralized. Note 
r is the reference signal representing the desired 
behaviour of the system. Figure courtesy of Marco 
Coraggio.
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network system is considered as a whole and its stability under pertur-
bations is studied and those in which the aim is to prove that stability 
of individual agents is preserved when they are interconnected in a 
certain way. Examples of tools that consider the whole network system 
include those based on the Lyapunov direct method90 or those based on 
linearization, such as the master stability function approach96. Other 
successful approaches are based on the use of incremental stability and 
convergence tools such as contraction theory23,92–95 or incremental pas-
sivity91. These tools can be also adapted to study problems related to the 
concept of connective stability16, which points to another fundamental 
issue touched upon earlier, namely, the role played by the underlying 
network structure on the dynamics taking place on it.

Approaches for control design abound in the literature and map 
onto the various areas of control theory including those based on 
dynamic optimization, optimal control, game theory, adaptive control, 
intelligent control, nonlinear control, model predictive control and 
robust control to name a few. Data-driven methods and control strat-
egies based on machine learning are also increasingly being adopted 
to control the behaviour of complex networks. For more details, see 
refs. 97,98 and the discussion in the section on ‘New paradigms and 
modelling techniques’.

Despite the advances in the field, many open challenges remain to 
be solved. Recent efforts in the control community have focused on the 
effects of noise on coordinated collective behaviour in networks, their 
resilience to perturbations (including structural perturbations), the 
development of strategies for coordination and consensus guarantee-
ing privacy of the nodes and the analysis and control of disturbance 
propagation in network systems99–109.

Approaches from dynamical systems
Like methods from statistical physics, methods from dynamical systems 
also provide insights into control strategies that are typically aimed at 
steering and influencing the system and not on strict controllability. 
Many approaches directly exploit the nonlinear nature of the system. 
There are also data-driven methods such as system identification. 
We discuss these topics next.

Given the dynamical equations that model the behaviour of a sys-
tem and its phase space of attractors, limit cycles and basin boundaries, 

one may be able to find strategic perturbations that exploit the natural 
trajectories to drive the system to a desirable region of phase space. 
Early on, this possibility was shown for chaotic attractors110, with much 
follow-on work in this area of the control of chaos111–113. More recently, 
it was shown how to achieve control through a sequence of strategic 
kicks that, moreover, account for constraints on how the system can be 
perturbed114. Although exploiting natural trajectories in phase space 
is appealing, in practice, it is difficult to provide the rigorous perfor-
mance guarantees and robustness to noise necessary for traditional 
control theory. For instance, basin boundaries can be riddled or fractal.

In related literature, there is a substantial body of work on control 
of chimaera states115. Chimaera states display surprising symmetry-
breaking properties as they are defined by the coexistence of coherent 
and incoherent dynamics in a system of symmetrically coupled, identi-
cal oscillators116,117. Studies in this context include work on time-delayed 
feedback control118–120, pinning control121, periodic forcing122, control 
via topology123 or coupling modification124 and control of chimaeras 
in multilayer networks125. A more general collection of works centred 
on control of self-organizing nonlinear dynamical systems is shown in 
ref. 126, although many open directions are yet to be explored.

Often, the equations of motion of a system are unknown. Even the 
state space may be unknown. But data on the system may be abundant. 
If the data generated by a system — its observables, that is, physical 
quantities that can be measured — are a function of its state, one may 
be able to infer the evolution of the system from time-series data. 
For example, many techniques for system identification or network 
inference have been presented in the literature (such as refs. 127–129 
and references therein). In the next section, we discuss more recent 
approaches to this problem on the basis of operator theory and sparse 
identification techniques.

New paradigms and modelling techniques
Several opportunities exist to increase the applicability of the methods 
discussed earlier to real-world systems.

How much can one increase network complexity?
In recent years, a focus in the physics literature has been on increasing 
network complexity. A ‘network’ formally consists of a collection of 

Table 1 | Notions and methods rooted in or with strong flavour of statistical physics that have been applied to study the 
structural, dynamical or control properties of complex networks

Notion or method Brief description Application

Statistical ensemble A set of (often infinitely) many virtual copies of a system, considered 
together, each representing a possible configuration of the real 
system

The ongoing development of random graph models2

Generating function 
formalism

Mean-field approach based on the branching process and the tree 
ansatz

For the studies of network structure36,37 (such as the emergence of 
the giant connected component), dynamics (such as cascading 
failures188) and certain control properties (such as observability 
transition in power grid59), especially for tree-like networks

Master-equation 
approach

Where the time evolution of a system can be described by a 
transition rate matrix that determines switching between states

Investigating the structure of growing networks32

Rate-equation 
approach

Useful for diverse non-equilibrium phenomena, such as 
aggregation, coarsening and epitaxial surface growth

Investigating the structure of growing networks33

Self-organized 
criticality

Where a system has a critical point as an attractor and thus exhibits 
criticality without requiring tuning of control parameters

Studying cascading failures in network systems42–47,50

Cavity method Mathematical method originally developed to solve some mean-
field type models in statistical physics, especially disordered 
systems (such as spin glasses)

Studying the control properties of complex networks in the 
structural control framework3
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pair-wise interactions between elements, but higher-order interactions, 
beyond dyadic, are often found in real-world networks. For instance, 
in a chemical reaction network, three reagents may be necessary for the 
reaction to progress; in co-author networks, a group of more than two 
authors is often present. The formalism of hypergraphs and simplicial 
complexes are being used to address this challenge130,131. Advances 
include defining their statistical ensembles132,133 and analysis of admis-
sible patterns of synchronization, their stability properties for both 
full synchronization134–136 and cluster synchronization137,138 and their 
controllability139. But ad hoc control strategies have not yet been fully 
developed.

Likewise, the paradigm of activity-driven temporal networks, 
which provide an instantaneous time description of the network 
dynamics, may prove fruitful140,141. In this approach, the activity poten-
tial for each node is determined from how relatively active that node is 
during a given time window as measured from time-resolved network 
data sets. The activity potential distribution function can encode the 
system-level dynamics.

Many real-world systems are multilayered networks. For example, 
individuals participate simultaneously in many distinct layers of social 
networks, and critical infrastructure networks often have a physical-
layered or logical-layered structure. This notion underlies work on 
structural control of multiplex networks142,143 and the use of graph 
products to capture layered critical infrastructure144,145 or the use of 
multiplex control strategies146.

Can one control non-equilibrium statistical physics models?
Statistical physics approaches tend to focus on equilibrium systems, yet 
there are well-known fluctuation–dissipation relations for systems that 
obey detailed balance. For instance, heat can be converted into work 
using a feedback control scheme on a double quantum dot model147, 

a finding that is driving further research into feedback control and 
fluctuations148. Likewise, there are several classic models of driven, far-
from-equilibrium systems, such as the SOC model42 (described in the 
section on ‘Statistical physics approaches’), the Kardar–Parisi–Zhang 
(KPZ) equation149 and the asymmetric simple exclusion process (ASEP) 
model150. Although these models have many universal behaviours, 
which are behaviours that are governed by general attributes such 
as underlying symmetries independent of dynamical details of the 
system, it may be possible to use feedback to influence the driving and 
thus control the behaviours.

How far can one go beyond linear models in the structural 
control framework?
A fundamental limitation in the classical framework of structural control4 
is that it relies on linear time-invariant dynamics, t A t B txx xx uu˙( ) = ( ) + ( ),  
where the elements in A and B are either fixed zeros or independent 
free parameters. This framework is based on the notion of structural 
controllability for linear systems. In particular, the system A B( , ) is 
structurally controllable if one can set the non-zero elements in A and 
B to certain values such that the resulting system is controllable in the 
usual sense, that is, it satisfies Kalman’s criterion of controllability: 

B AB A B Nrank[ , , …, ] =N −1 .
More recently, a structural control framework based on the notion 

of structural accessibility for nonlinear systems has been devel-
oped151,152. This framework is applicable to general nonlinear systems 

t t t txx ff xx gg xx uu˙( ) = ( ( )) + ( ( )) ( ) with very mild assumptions on the dynam-
ics (that tff xx( ( )) and tgg xx( ( )) are meromorphic functions). The notion of 
structural accessibility can be considered as a nonlinear generalization 
of structural controllability in linear systems4. Surprisingly, structural 
accessibility and structural controllability have almost the same  
graph-theoretical conditions. The key difference is that ‘self-loops’ 

Table 2 | Notions and methods from control theory that have been applied to analyse and control complex networks

Notion or method Brief description Application

Linear and nonlinear 
controllability and 
observability criteria

Use of controllability and observability criteria from 
linear and nonlinear control (such as Kalman’s criteria, 
structural controllability and observability and nonlinear 
controllability and observability)

Obtaining graph-theoretical criteria for controllability and 
observability of complex networks81–88

Lyapunov direct methods for 
stability analysis

Extensions of the Lyapunov direct method to study 
stability of network systems via the use of Lyapunov 
functions (such as connective stability or V-stability)

Studying stability of network systems, including studying global 
transversal stability for synchronization, nonlinear consensus 
problems, pinning control design and connective stability90,91,94

Passive and dissipative 
systems theory and external 
stability concepts as design 
tools for network control

Extensions of passivity and dissipativity theory to complex 
networks; definition and use of incremental passivity and 
dissipativity concepts

Studying interconnections of dynamical agents and establish their 
convergence properties. For example, the interconnection of passive 
systems is passive, and the interconnection of dissipative systems is 
stable under a Lyapunov diagonal stability condition189

Linear and nonlinear control 
approaches

Use of linear and nonlinear control approaches such as 
optimal control, adaptive control, intelligent control, 
robust control, nonlinear control, switched and hybrid 
control and proportional–integral–derivative (PID) control

Designing network control strategies based on linear and nonlinear 
control approaches in a range of different applications from 
engineering to the life sciences21,68,71,73,74,78

Pinning control strategies Exerting control on a relatively small number of selected 
agents to steer the macroscopic behaviour of the 
ensemble

Designing leader–follower strategies for consensus and 
synchronization of complex networks18–21

Contraction theory and 
incremental stability analysis 
tools

Use of differential (internal or external) stability tools 
to investigate convergence in complex networks

Proving convergence in network systems of relevance in applications 
from computational neuroscience to power grids and gene 
regulatory networks23,92,93,95,190,191

Distributed and cooperative 
control approaches

Exploitation of distributed and cooperative control 
strategies to deploy sensing, actuation and control in a 
network system

Design of strategies for coordination, consensus and synchronization 
in complex networks via the design of interaction protocols 
among nodes, adaptation and evolution of the network edges and 
structure63–80,106. These also include game theoretical approaches192–196
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(corresponding to intrinsic nodal dynamics) can be used to satisfy the 
graph-theoretical conditions for structural controllability, but not for 
structural accessibility. This structural accessibility framework has 
been applied to ecological and biochemical systems to identify driver 
nodes from their underlying network structure151.

How to deal with very large complex multi-agent systems?
Another pressing open problem in control is that of taming the dynam-
ics of complex systems in the limit that the number of agents becomes 
very large or, more precisely, when the system exhibits emergent prop-
erties that become invariant with respect to the number of agents. 
In this context, the problem becomes that of finding a macroscopic 
description of the observables of interest one wishes to control and 
defining suitable control strategies to change them. Doing so entails 
the problem of closing the loop across the macroscopic scale of the 
variables of interest and the microscopic agent level at which control 
can be typically exerted. For extremely complex and large networks, 
achieving any control objective beyond identifying driver nodes is 
a challenging task, even for networks of linear dynamical systems.

An advance called the continuification (or continuation) 
method153,154 involves turning the microscopic problem described by 
a large set of ODEs into a PDE describing the observables of interest at 
the macroscopic level (continuification stage). A macroscopic control 
action is then designed using techniques for the control of PDEs155,156, 
and the resulting control law is ultimately discretized so that it can 
be deployed back at the microscopic agent level157. In this approach, 
the challenge becomes that of finding methods to continuify a given 
problem of interest and to discretize appropriately, to obtain a mean-
ingful distributed control strategy at the microscopic level. A major 
hurdle is that typically when the control law resulting from the PDE is 
discretized then all or most of the agents will be affected by the control 
input, contrary to the goal of controlling a network through interacting 
with only a relatively small fraction of controller or driver nodes, such 
as in the spirit of pinning control.

Another framework is based on the graphon control of large-scale 
networks of linear systems158. Graphons are the limits of converg-
ing graph sequences, which form a natural, non-parametric method 
to model and estimate extremely large networks159. Graphon theory 
has emerged as a subfield of graph theory and spurred wide interest 
owing to its connections with statistical physics, extremal combina-
torics and non-parametric statistical analysis on networks160–162. The 
graphon-based strategy for controlling complex and large network 
systems consists of three steps. One first identifies the graphon limit 
of a sequence S of finite network systems as the number of nodes goes 
to infinity. One then solves the corresponding control problem in this 
limit. Finally, one can generate control laws for any system along the 
sequence S of finite network systems by approximating the control 
law for the limit system. This strategy has been used on large-scale 
complex networks to solve the state-to-state control problem and the 
linear quadratic regulator problem.

As a statistical framework for network games and intervention, 
the notion of graphon games (in which a continuum of heterogeneous 
agents interact according to a graphon) has also been proposed163. This 
framework is another interesting example of using graphon theory to 
study interventions on large networks. How to leverage graphon theory 
to control arbitrarily large networks with general nonlinear dynamics 
remains an outstanding problem.

As research moves towards larger networks, an increasingly impor-
tant problem is to investigate the possibility of controlling a complex 

network of interest by controlling and/or observing the mesoscopic 
scale. Such a mesoscale could be at the level of communities or clusters 
of nodes or edges. Doing so is an open problem that deserves further 
attention and requires a proper definition of what an appropriate 
mesoscopic level description is from a control viewpoint.

Can one use data to construct effective equations of motion?
Beyond the well-established approach of system identification, there 
are alternative approaches to reconstructing the effective equations 
of motion.

One such approach is the Koopman operator method. It is a linear 
transformation on a vector space of observables where the evolution 
can be written as a linear expansion in terms of eigenfunctions of an 
operator known as the Koopman operator. Doing so provides a linear 
rule of evolution, but an infinite dimensional space of observables. 
Instabilities can be associated with modes that have positive eigen-
values and one can even identify the role of individual nodes in esca-
lating the instabilities by their relative amplitudes in the associated 
eigenvectors. The usefulness of the Koopman operator for the analysis 
of dynamical systems is well established164,165. It also has applications 
to nonlinear flows166. More recent highlights apply the approach to 
optimal controllers167,168 and feedback control169–171. A useful primer is 
ref. 172, and two recent comprehensive treatments are refs. 173,174.

A different data-driven approach relies on the assumption that, 
despite being high dimensional, the dynamics are primarily influ-
enced by only a few main variables so that the equations are sparse 
in the space of possible functions. Sparsity-promoting techniques 
and machine learning can be used in combination on noisy measure-
ment data to identify governing equations, a technique known as 
SINDY (sparse identification of nonlinear dynamics)175. SINDY has been 
extended to include the effects of actuation and it has been shown 
how to enhance performance of model predictive control based on 
limited, noisy data176.

More recently, dimension reduction techniques have been used 
on high-dimensional time-series data to map it onto a low-dimensional 
subspace, with SINDY then used to determine the reduced dynamics. 

Real system Modelling
• Mathematical
• Data-driven
• Computational
…

Analysis
• Observability 
• Controllability 
• Equilibria
…

Control synthesis
• Linear
• Nonlinear
…

Validation
• Stability analysis
• Performance
• Robustness
• Simulations
…

Implementation

Fig. 5 | Main stages of a classical closed-loop controller design. Starting from 
the real system, a model is first obtained whose properties in the absence of 
control are analysed. A control strategy is then designed to fulfil the desired 
specifications and then must be validated before being implemented. Often, 
this design approach requires several iterations before an accurate controller is 
achieved. Figure courtesy of Gian Carlo Maffettone.
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If the resulting phase space consists of a few fixed points, the system 
can be tuned to induce desired instabilities and attractors, implement-
ing feedforward control of high-dimensional, nonlinear, network 
systems177.

How can machine learning and data-driven control methods 
be used to tame complexity?
As the complexity of problems of interest in applications increases 
alongside the available computational power, control strategies for 
complex networks based on machine learning and data-driven meth-
ods are becoming increasingly popular in different areas of science 
and technology. A notable example is that of prototypical designs 
of interconnected autonomous vehicles. Companies such as Google 
Waymo (https://waymo.com) and others have proposed the use of 
deep learning to design self-driving cars or to achieve autonomous 
vehicle platooning, such as truck platooning (https://highways.dot.gov/
research/laboratories/saxton-transportation-operations-laboratory/
Truck-Platooning). Another example is that of autonomous robots 
and swarm robotics, in which computational techniques based on 
machine learning are also being used increasingly often178. Methods for 
data-driven control of networks under different scenarios have been 
proposed, as discussed in the previous sections, but a framework for 
their use in more general settings is still lacking.

Nevertheless, it is becoming increasingly clear that data-driven 
and learning-based methods179,180 might be the only option when the 
problem is too hard to solve analytically, such as when a mathemati-
cal model cannot be derived or the task to be solved is too complex. 
One such scenario is when the goal is to achieve control by adapting 
dynamically in time the structure of temporal networks in response to 
changes in the dynamics and therefore the states of the agents inter-
connected by it140,141 (see ref. 181 for a simpler illustrative example). 
Solving this problem might be extremely important in real applications 
in which the goal is to endow the network with the ability to rewire its 
structure to maintain its desired function even in the presence of faults 
or perturbations. Examples could include the case of self-organizing 
power grids able to island themselves to prevent faults or overcurrents, 
or the case of groups of autonomous vehicles or robots changing 
the structure of their interconnections to better perform obstacle 
avoidance or complex manoeuvres.

Action items
A multidisciplinary and interdisciplinary research effort is required 
to advance the current state of the art and address problems in which 
complexity is not only tamed but also exploited to achieve better 
control performance and to solve complex tasks. The aim should 
be twofold. First, to bridge the gap between disciplines and extend 
the use of techniques such as mean-field approaches to the control 
of complex networks182, taking into account realistic constraints and 
the need to achieve feedback strategies that guarantee desired stabil-
ity, performance and robustness properties. Second, to identify a set 
of paradigmatic problems or benchmark case studies that could be 
used to validate and contrast different approaches to control complex 
systems. Doing so is particularly important as applications that arise in 
a multitude of different domains and techniques developed in specific 
areas could be abstracted to solve more general problems. An example 
is the technique of phase response curves to analyse the dynamics of 
nonlinear oscillators (such as neurons) that were recently proposed as 
a tool to achieve control of more general classes of nonlinear systems 
(see ref. 183 and references therein).

To move this field forward and to facilitate collaboration across dis-
ciplines, we call for community efforts. One action item could be to initi-
ate a series of challenges to benchmark methods in solving fundamental 
problems in controlling complex systems. In the field of computer 
science, holding challenges has become a tradition. There is a long list 
of successful challenges, including the Microsoft Imagine Cup, Google 
AI Challenge, ImageNet Challenge and Netflix Prize. It can be argued 
that some of the challenges (such as the ImageNet Challenge) catalysed 
the boom of artificial intelligence that the world is experiencing today. 
Likewise, in the field of systems biology and translational medicine, 
there has been an excellent paradigm of running challenges: the so-
called DREAM challenges, which provide high-quality benchmark 
biomedicine data sets, invite participants to propose solutions, foster 
collaboration and build communities in the process. Network control 
researchers can certainly learn from those existing challenge platforms 
in other fields to further advance our field, so that the ‘wisdom of the 
crowd’ provides the greatest impact on science.

Owing to the multidisciplinary nature of controlling complex 
systems, challenges do not have to focus on purely theoretical prob-
lems but can be applied or even translational. For example, there was 
an attempt to perform structural controllability analysis of a directed 
human protein interaction network to identify disease genes and drug 
targets184. Further studies on this topic are warranted. Moreover, there 
are many potential applications of control theory in designing ways to 
better manipulate the human gut microbiome — the inner ecosystem 
in humans consisting of trillions of microorganisms interacting with 
each other in a complicated way185. One very practical control problem 
in this area is to design a well-defined consortium of live microorgan-
isms (often referred to as probiotic cocktails, bugs-as-drugs or live 
biotherapeutic products) to decolonize certain pathogens and prevent 
future infection186. Another possibly interesting arena for benchmark-
ing methods would be protection and control of microgrids187 (that is, 
a local electrical grid with defined electrical boundaries, acting as a 
single and controllable entity).

The ultimate goal is to combine tools and techniques from 
different areas of science and technology to address the crucial prob-
lem of closing the control loop across different scales, to orchestrate 
the collective behaviour of large-scale, complex systems. Solving 
this problem has potential to have enormous impact in a plethora of 
different applications across domains.

Published online: xx xx xxxx
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