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SUMMARY9

Advancements in artificial intelligence (AI) have transformed many scientific fields, with mi-10

crobiology and microbiome research now experiencing significant breakthroughs through ma-11

chine learning and deep learning applications. This review provides a comprehensive overview12

of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both13

technical advancements and biological insights. We begin with an introduction to foundational14

AI techniques, including primary machine learning paradigms and various deep learning archi-15

tectures, and offer guidance on choosing between machine learning and deep learning meth-16

ods based on specific research goals. The primary section on application scenarios spans17

diverse research areas, from taxonomic profiling, functional annotation & prediction, microbe-X18

interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology,19

to prevention & therapeutics. Finally, we discuss challenges unique to this field, including the20

balance between interpretability and complexity, the ”small n, large p” problem, and the criti-21

cal need for standardized benchmarking datasets to validate and compare models. Together,22

this review underscores AI’s transformative role in microbiology and microbiome research,23

paving the way for innovative methodologies and applications that enhance our understand-24

ing of microbial life and its impact on our planet and our health.25
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Introduction80

For over 3.5 billion years, our planet and its inhabitants have been shaped by various mi-81

croorganisms [1]. For example, Cyanobacteria, through photosynthesis, produced oxygen and82

contributed to the Great Oxygenation Event around 2.4 billion years ago, making the Earth hos-83

pitable for aerobic life [2]. Certain bacteria, like Rhizobium, fix atmospheric nitrogen into forms84

usable by plants, supporting plant growth and agriculture [3]. Commensal microbes in human85

and animal guts aid in digestion and nutrient absorption, essential for health and survival [4].86

Similarly, some microbes can break down organic matter, recycling nutrients in ecosystems,87

which is vital for maintaining soil fertility and ecosystem balance [5]. Given the profound in-88

fluence microorganisms have had on the evolution of life and the functioning of ecosystems,89

advancing microbiology research is crucial for understanding and harnessing these processes90

to benefit health, agriculture, and environmental sustainability.91

It is not a big surprise that disrupted microbial communities (or microbiomes) can have a92

huge impact on our planet and ourselves. Indeed, agricultural practices, such as excessive93

use of chemical fertilizers and pesticides, can disrupt soil microbiomes, leading to reduced94

soil fertility and increased vulnerability to erosion [6]. Runoff containing pollutants and antibi-95

otics can significantly disrupt the microbiomes of freshwater and marine ecosystems, leading96

to changes in water quality and impacting the health of aquatic life by altering the natural bal-97

ance of microbial communities within the environment; this can potentially promote the growth98

of harmful bacteria and disrupt critical ecological processes like nutrient cycling [7, 8]. Many99

human diseases have been associated with disrupted microbiomes, including acne, eczema,100

dental caries, obesity, malnutrition, inflammatory bowel disease, asthma/allergies, hardening of101

arteries, colorectal cancer, type 2 diabetes, as well as neurological conditions such as autism,102

anxiety, depression, and post-traumatic stress disorder, etc [9, 10]. Gaining a deeper under-103

standing of the activities of microbial communities, both within and around us, can greatly bene-104

fit our health and the health of our planet. This explains why in the past decades the microbiome105

has been a very active research topic in microbiology.106

Artificial Intelligence (AI) focuses on creating intelligent machines that can execute tasks107

that usually need human intelligence. AI emerged as an academic discipline at the 1956 Dart-108

mouth conference, shaped by pioneering work by Warren McCulloch, Walter Pitts, and Alan109

Turing on neural networks and machine intelligence. At first, AI research concentrated on sym-110

bolic reasoning, including early applications in biomedicine, such as the MYCIN expert system111

for diagnosing bacterial infections. Meanwhile, machine learning developed, showcasing algo-112

rithms that improved through data training. Despite early excitement and positive forecasts, the113

pace of AI advancement decelerated over the following decades, hindered by hardware con-114

straints and unmet expectations, leading to a period known as ”AI winter.” However, the domain115

continued to progress, incorporating probabilistic methods to manage uncertainty. In around116

2010, a new phase in AI emerged, fueled by breakthroughs in deep learning frameworks, the117

advent of powerful hardware (e.g., GPUs), open-source software tools, and greater access to118

extensive datasets (e.g., ImageNet [11]). In 2012, significant breakthroughs occurred when119

AlexNet (a deep learning architecture based on the convolutional neural network) surpassed120

preceding machine learning methodologies in visual recognition [12]. The subsequent innova-121

tions, particularly the Transformer (a deep learning architecture initially developed for machine122

translation) introduced in 2017 [13], triggered an ”AI boom” marked by considerable investment.123

4



This surge in investment led to a wide range of AI applications by the 2020s, accompanied by124

increasing concerns regarding its societal implications and the pressing need for regulatory125

measures.126

In this article, we review the application of various AI techniques in microbiology and mi-127

crobiome research. We will focus on the applications of machine learning, particularly deep128

learning techniques. Traditional microbiologists excel in image analysis skills for identifying129

pathogens in Gram stains, ova and parasite preparations, blood smears, and histopathologic130

slides. They classify colony growth on agar plates for assessment. AI advances in computer131

vision can automate these processes, supporting timely and accurate diagnoses [14, 15]. Ad-132

vances in sequencing technologies, especially next-generation sequencing, enable substantial133

numbers of samples to be processed rapidly and cost-efficiently [16]. The accessibility of large-134

scale microbiome datasets propelled the development of numerous AI (especially machine135

learning or deep learning) approaches in microbiome studies, as reviewed previously [17–51].136

However, a comprehensive review of existing applications of AI techniques in microbiology137

and microbiome research is still lacking. This review article aims to fill this gap. The follow-138

ing sections are organized as follows. We first briefly describe various AI subfields, focusing139

on machine learning and the three basic machine learning paradigms. Next, we elaborate on140

the different deep learning techniques categorized under the three primary machine learning141

paradigms. Then, we systematically review the various applications of AI techniques in micro-142

biology and microbiome research. Finally, we will present an outlook on the future directions143

of AI for microbiology and microbiome research.144

Artificial Intelligence Techniques145

Themultiple subfields of AI research are focused on specific objectives and the utilization of dis-146

tinct tools. The conventional objectives of AI research encompass searching, knowledge rep-147

resentation, reasoning, planning, learning, communicating, perceiving, and acting [52]. Most148

AI applications in microbiology and microbiome research rely on machine learning, which is the149

focus AI subfield of this Review.150

Learning Paradigms151

Machine learning is a subfield of AI that employs algorithms and statistical models, enabling152

machines to learn from data and improve their performance on specific tasks over time [53].153

Machine learning is typically categorized into three primary learning paradigms: supervised154

learning, unsupervised learning, and reinforcement learning. These paradigms differ in155

the specific tasks they can address as well as in the manner in which data is presented to the156

computer. Generally, the nature of the task and the data directly influence the selection of the157

appropriate paradigm.158

Supervised learning involves using labeled datasets, where each data point is linked to a159

class label. The algorithms in this approach aim to create amathematical function that connects160

input features to the expected output values, relying on these labeled instances. Common161

uses include classification and regression. Classical machine learning methods for classifi-162

cation/regression include Logistic Regression, Naïve Bayes, Support Vector Machine (SVM),163
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Random Forest, ExtremeGradient Boosting (XGBoost), etc. Thosemethods have been heavily164

used in microbiology and microbiome research.165

In unsupervised learning, algorithms analyze unlabeled data to detect patterns and relation-166

ships without any defined categories. This process uncovers similarities in the dataset and in-167

cludes techniques like clustering, dimensionality reduction, and association rules mining. Clas-168

sical unsupervised learningmethods include k-means clustering, Principal Component Analysis169

(PCA), Principal Coordinate Analysis (PCoA), and t-distributed stochastic neighbor embedding170

(t-SNE) for dimension reduction, and the Apriori algorithm for association rules mining. Among171

them, PCoA is a commonly used tool in microbiome data analysis, particularly valuable for visu-172

alizing and interpreting the differences in microbial community composition between samples.173

Reinforcement learning focuses on enabling intelligent agents to learn through trial-and-174

error in a dynamic environment to maximize their cumulative rewards [54–56]. Without labeled175

datasets, these agents make decisions to maximize rewards, engaging in autonomous explo-176

ration and knowledge acquisition, which is crucial for tasks that are difficult to program explicitly.177

Integrating these paradigms can often lead to better outcomes. For instance, semi-supervised178

learning finds a middle ground by utilizing a small set of labeled data alongside a larger collec-179

tion of unlabeled data. This method harnesses the strengths of both supervised and unsuper-180

vised learning, making it a cost-effective and efficient way to train models when labeled data181

is scarce. In situations where obtaining high-quality labeled data is difficult, self-supervised182

learning presents a viable alternative [57]. In this framework, models are pre-trained on un-183

labeled data, with labels generated automatically in subsequent iterations. Self-supervised184

learning effectively converts unsupervised machine learning challenges into supervised tasks,185

improving learning efficiency.186

Transfer learning is another interesting machine learning technique, which involves taking187

a pre-trained model on a large dataset and fine-tuning it on a smaller, task-specific dataset [58,188

59]. This approach leverages the knowledge acquired by the model during pre-training to im-189

prove performance on a new task. Transfer learning can be applied within both supervised190

and unsupervised learning paradigms, meaning it can utilize knowledge learned from either191

labeled or unlabeled data depending on the situation; essentially, transfer learning ”transfers”192

the learned representations from one task to another, regardless of whether the original task193

was supervised or unsupervised.194

Note that both self-supervised learning and transfer learning leverage pre-trained models195

to improve performance on new tasks, but the key difference is that self-supervised learning196

generates its own labels, often called “pseudo-labels”, from unlabeled data during the pre-197

training phase, while transfer learning relies on existing labeled or unlabeled data for pre-198

training. Both self-supervised learning and transfer learning are extensively used in the train-199

ing of large language models (LLMs), with self-supervised learning often being the primary200

method for pre-training on massive amounts of unlabeled data, while transfer learning allows201

the pre-trained model to be adapted to specific downstream tasks with fine-tuning on smaller la-202

beled datasets. LLMs tailored for biology, e.g., genomic and protein language models [60–64],203

have numerous applications in microbiology and microbiome research. These models, trained204

on vast amounts of biological sequence data, can generate insights and predictions that are205

valuable across various areas in microbiology and microbiome research, as we discuss later.206
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Figure 1. A taxonomy of deep learning techniques. Figure adapted from Ref [70]. MLP:
Multi-Layer Perceptron; CNN: Convolutional Neural Network; ResNet: Residual Neural Net-
work; GCN: Graph Convolutional Network; GAT: Graph Attention Network; RNN: Recurrent
Neural Network; LSTM: Long Short-TermMemory; GRU: Gated Recurrent Unit; SAT: Structure-
Aware Transformer; GAN: Generative Adversarial Network; AE: Auto-Encoder; SAE: Sparse
Autoencoder; DAE: Denoising Autoencoder; CAE: Contractive Autoencoder; VAE: Variational
Autoencoder; SOM: Self-Organizing Map; RBM: Restricted Boltzmann Machine; DBN: Deep
Belief Network; DRL: Deep Reinforcement Learning.

Deep learning techniques207

As a subfield of machine learning, deep learning represents a further specialization that utilizes208

deep neural networks to process and analyze large datasets, allowing for the automatic iden-209

tification of patterns and the solving of complex problems. The reason why we often need a210

deeper rather than a wider neural network is that, if we regard a neural network as a function211

approximator, the complexity of the approximation function will typically grow exponentially with212

depth (not width). In other words, with the same number of parameters, a deep and narrow213

network has stronger expressive power than a shallow and wide network [65–69].214

Based on the three primary machine learning paradigms, deep learning can be broadly di-215

vided into three major categories (Fig.1). The first category includes deep networks for super-216

vised or discriminative learning, such as Multi-Layer Perceptron (MLP), Convolutional Neural217

Network (CNN) and their variants, Recurrent Neural Network (RNN) and their variants, as well218

as the Transformer. Roughly speaking, RNN propagates information through all hidden states219

in a sequential way, while CNN takes local information in developing each representation. By220

contrast, Transformer develops global contextual embedding via self-attention [13], which en-221

ables models to dynamically determine the relative importance of various words in a sequence,222

improving the ability to capture long-range dependencies. Another big advantage of Trans-223

former is its easy parallelism. Unlike RNN, the Transformer can process entire sequences in224

parallel, which allows us to use GPUs for training. This significantly reduces the training time,225

and allows the use of very large models, often with hundreds of billions of parameters. These226
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two advantages explain why the Transformer has facilitated so many LLMs, e.g., BERT, T5,227

GPT, PaLM, Gemini, and has revolutionized AI. As we will see later, all those deep network ar-228

chitectures in the first category (i.e., MLP, CNN, RNN, and Transformer), which were originally229

used for supervised learning, have been widely used in microbiome research.230

The second category includes deep networks for unsupervised or generative learning, such231

as Generative Adversarial Network (GAN), Autoencoder (AE) and its variants, Self-Organizing232

Map (SOM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). GAN is a233

very popular neural network architecture in recent years [71]. This architecture uses the idea of234

game theory to train two neural networks to compete with each other, thereby generating more235

realistic new data from a given training data set. AE is also a very common unsupervised neural236

networkmodel, which can learn the latent features of the input data (called encoding), and at the237

same time use the learned features to reconstruct the original input data (called decoding) [72].238

There are many variants of AE. Among them, the variational autoencoder (VAE) is probably239

the most famous one. VAE uses a probabilistic framework. Instead of mapping the input to240

a single point in the latent space, VAE maps the input to a distribution on the latent space,241

allowing for more flexible and expressive data representation [73]. As we will see later, both242

GAN and AE have been widely used in microbiome research. The other three models (SOM,243

RBM, and DBN) have not.244

The third category includes deep networks for hybrid learning and relevant other tasks.245

There are three kinds of hybrid learning models: (1) An integration of different generative246

(or discriminative) models to extract more meaningful and robust features, e.g., CNN+LSTM,247

AE+GAN; (2) An integration of a generative model followed by a discriminative model, e.g.,248

DBN+MLP, GAN+CNN, AE+CNN, etc; (3) An integration of generative or discriminative model249

followed by a non-deep learning classifier, e.g., AE+SVM, CNN+Random Forest, etc. As we250

will see later, all three hybrid learning models have been widely used in microbiome research.251

This category also includes Deep Reinforcement Learning (DRL). DRL is a subfield of machine252

learning that combines reinforcement learning and deep learning. Reinforcement Learning253

helps agents learn decision-making through trial and error. DRL improves this by using deep254

learning to extract decisions from unstructured data without manual state space engineering.255

DRL algorithms can take in very large inputs (e.g., an image of the raw board state and the256

history of states) and decide what actions to perform to optimize an objective (e.g., winning the257

game). A famous DRL algorithm is AlphaGo Zero, learning from playing the ancient Chinese258

game of Go without using any human knowledge [74]. So far, applications of DRL techniques259

in microbiome research are still very rare.260

When to Use Machine learning vs. Deep learning?261

We do not always need fancy deep learning techniques for microbiology and microbiome re-262

search. Sometimes we do not need deep learning at all. Logistic Regression or Random Forest263

might work very well. Choosing between deep learning and traditional machine learning meth-264

ods depends on data characteristics, the specific problem at hand, available computational265

resources, and the need for model interpretability. Traditional methods are generally preferred266

for smaller, structured datasets and scenarios requiring interpretability (such as clinical applica-267

tions), while deep learning excels with large, unstructured datasets and complex tasks requiring268

high performance.269
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If we decide to apply or develop deep learning methods to solve our problem, there is a270

general procedure [75]. First, we need to choose the appropriate performance metrics (e.g.,271

Accuracy, Precision, Recall, F1-score, AUROC, AUPRC). Second, we need to find the default272

baseline deep learning models based on the data structure. For supervised learning tasks that273

involve fixed-size vector inputs, it is advisable to utilize a feedforward network featuring fully274

connected layers (e.g., MLP). If the input possesses a known topological structure, such as275

images or graphs, opting for CNN or its variants (e.g., graph convolutional network (GCN)) is276

recommended. When dealing with inputs or outputs that form sequences, we should consider277

using RNN and its variant (e.g., LSTM or GRU) or Transformer. 1D CNN or temporal convo-278

lutional network (TCN) might also work. Depending on the task, a hybrid deep learning model279

could also be considered. Third, we need to establish a reasonable end-to-end system, which280

involves choosing the appropriate optimization algorithm (e.g., SGD with momentum, Adam)281

and incorporating regularization (via early stop, dropout, or batch normalization). Finally, we282

need to measure the performance and determine how to improve it. We can either gather283

more training data or tune hyperparameters (e.g., learning rate, number of hidden units) via284

grid search or random search.285

Application Scenarios286

There are numerous applications of AI techniques in microbiome research. We can briefly287

group those applications into the following scenarios: taxonomic profiling, functional annotation288

& prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition,289

clinical microbiology, prevention & therapeutics. For each application scenario, there are many290

specific tasks. In the following, we will present each of the specific tasks and the representative291

AI methods.292

Taxonomic Profiling293

A fundamental goal of microbiology and microbiome research is determining the compositions294

of microbial communities, i.e., identifying and quantifying different types of microorganisms295

(such as bacteria, fungi, viruses, and archaea) present in a given sample. This involves ana-296

lyzing their relative abundances and diversity, often using DNA sequencing techniques. Cur-297

rently, three generations of DNA sequencing techniques are available for microbiome research.298

The first-generation sequencing utilizes the chain termination method, offering read lengths of299

500-1000 base pairs [76]. Second-generation sequencing, also known as next-generation se-300

quencing (NGS), includes methods such as pyrosequencing, sequencing by synthesis, and301

sequencing by ligation, with read lengths ranging between 50 and 500 bp [77]. Two key NGS302

applications in microbiome research are (1) amplicon sequencing, which targets small frag-303

ments of one or two hypervariable regions of the 16S rRNA gene (for archaea and bacteria)304

or 18S rRNA gene (for fungi); and (2) metagenomic shotgun sequencing, which comprehen-305

sively samples all genes in all organisms present in a given community. NGS also offers short306

reads, with read lengths reaching 50-500 bp [77–79]. The third-generation sequencing per-307

forms single-molecule sequencing, offering long reads with lengths reaching tens of kilobases308

on average [80]. In the following, we discuss applications of AI techniques in various aspects309

of taxonomic profiling.310

9



ATCGAGGTCGAC

TCGAGGTCGACA

plasmid

biosynthetic gene 
clusters

probiotic phage

...

antimicrobial peptides

ARGs
viral mutation

O

OH

O

OH
O

OH

O

OH

O

OH

O
OH

O

OH

proteins

diseases

metabolites

MeO

Ph N

O

Figure 2. Application scenarios of AI in microbiology and microbiome research.

10



Metagenome assembly311

Metagenomics refers to the direct study of the entire genomic information contained in a micro-312

bial community. Metagenomics avoids isolating and culturing individual microorganisms in a313

community and provides a way to study microorganisms that cannot be isolated and cultured.314

There are two main approaches for processing metagenomic sequencing data: (1) assembly-315

based and (2) reference database-based. The goal of the assembly-based approach is to316

construct and annotate the so-called metagenome-assembled genomes (MAGs) [81]. The317

construction and annotation of MAGs have greatly promoted our understanding of microbial318

populations and their interactions with the environment. It is worth noting that most MAGs rep-319

resent new species, which helps to understand the so-calledmicrobial dark matter. The process320

of constructing MAGs includes two main steps: assembly and binning. Assembly refers to the321

process of reconstructing longer sequences (contigs) from short DNA reads obtained through322

sequencing. This involves piecing together overlapping reads to form continuous sequences323

that represent parts of the genomes present in the microbial community.324

Deep learning has been widely used in the quality control of metagenomic assembly. Many325

factors (e.g., sequencing errors, variable coverage, repetitive genomic regions, etc.) can pro-326

duce misassemblies. For taxonomically novel genomic data, detecting misassemblies is very327

challenging due to the lack of closely related reference genomes. Deep learning methods can328

identify misassembled contigs in a reference-free manner. Representative methods include329

DeepMAsEd [82] and ResMiCo [83]. DeepMAsEd is based on CNN. Denote a contig as a330

sequence of nucleotides. At each position in the sequence, the concatenation of two types of331

information (raw sequence and read-count features) yields the input vector. To train and eval-332

uate DeepMAsEd, one can generate a synthetic dataset of contigs, read counts, and binary333

assembly quality labels. As an extension of DeepMAsEd, ResMiCo is based on ResNet, a334

variant of CNN. The key feature of ResNet is the introduction of skip connections, which effec-335

tively solves the degradation problem of deep neural networks [84]. Compared to DeepMAsEd,336

ResMiCo leveraged a much more informative input vector computed from raw reads and con-337

tigs. Moreover, ResMiCo was trained on a very large and varied dataset. Through thorough338

validation, it was demonstrated that ResMiCo significantly outperforms other methods in accu-339

racy, and the model remains robust when faced with novel taxonomic diversity and different340

assembly methods. We notice that both DeepMAsEd and ResMiCo used a carefully designed341

input vector. It would be interesting to explore if we can use a more advanced deep learning342

architecture (e.g., the Transformer) or a hybrid learning approach (e.g., CNN + RNN) to directly343

deal with the raw sequence data, avoiding the manual design of the input vector.344

Metagenome binning345

Metagenomic binning involves grouping those assembled sequences into clusters (bins or346

MAGs) that correspond to different species or genomes. Metagenomic binning helps in iden-347

tifying and categorizing the different microorganisms present in a metagenomic sample, even348

if they are not fully assembled into complete genomes. There are many methods for metage-349

nomic binning [85–88]. Several binning methods are based on deep learning, e.g., VAMB [89],350

CLMB [90], SemiBin [91], GraphMB [92], and COMEBin [93]. VAMB (Variational Autoen-351

coders for Metagenomic Binning) uses VAE to encode sequence coabundance and k-mer dis-352
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tribution information, and clusters the resulting latent representation into genome clusters and353

sample-specific bins [89]. As an extension of VAMB, CLMB (Contrastive Learning framework354

for Metagenome Binning) can efficiently eliminate the disturbance of noise and produce more355

stable and robust results [90]. CLMB is based on contrastive learning, an machine learning356

approach that focuses on extracting meaningful representations by contrasting positive and357

negative instances [90]. SemiBin employs deep siamese neural networks to exploit the in-358

formation in reference genomes, while retaining the capability of reconstructing high-quality359

bins that are outside the reference dataset [91]. Here, a siamese neural network (a.k.a. twin360

neural network) is a neural network that uses the same weights while working in tandem on361

two different input vectors to compute comparable output vectors [94]. GraphMB integrates362

GCN with assembly graphs to improve binning accuracy [92]. It models each contig using VAE363

for feature generation and aggregates these features using a GCN. This method accounts for364

read coverage in its loss function and uses iterative medoid clustering to finalize the binning.365

COMEBin is the latest metagenomic binning method [93]. This method is based on contrastive366

multiview representation learning. It introduces a data augmentation approach that generates367

multiple views for each contig, enabling contrastive learning and yielding high-quality represen-368

tations of the heterogeneous features. Moreover, it incorporates a “Coverage module” to obtain369

fixed-dimensional coverage embeddings, which enhances its performance across datasets with370

varying numbers of sequencing samples. It also adapts an advanced community detection371

algorithm, Leiden, specifically for the binning task, considering single-copy gene information372

and contig length. COMEBin outperformed VAME and SemiBin on various simulated and real373

datasets, especially in recovering near-complete genomes from real environmental samples.374

Taxonomic classification375

All the methods discussed in the previous section are assembly-based metagenomic analysis376

methods. There are also many metagenomic analysis methods based on reference databases.377

In particular, thosemethods used for microbial classification and abundance estimation are also378

known as metagenomic profilers, which can be grouped into three categories based on the379

type of reference data [95]: (1) DNA-to-DNA methods (such as Bracken [96], Kraken [97, 98],380

and PathSeq [99]), which compare sequence reads with comprehensive genomes; (2) DNA-to-381

Protein methods (such as Diamond [100], Kaiju [101], and MMSeqs [102, 103]), which compare382

sequence readswith protein-coding DNA; (3) DNA-to-Markermethods (such asMetaPhlAn [104–383

107] and mOTUs [108, 109]), whose reference databases only contain specific gene families.384

It has been pointed out that the output of the first two categories is the sequencing abundance385

of species (without correction for genome size and copy number), while the output of the third386

category is the species abundance in a taxonomic or ecological sense [110]. Given these dif-387

ferent types of relative abundances, benchmarking metagenomic profilers remains a big chal-388

lenge [110].389

These metagenomic profilers query DNA sequences in reference databases based on the390

concept of homology, which refers to the similarity between sequences of DNA, RNA, or protein391

that is due to shared ancestry. Obviously, those methods are largely affected by the quality of392

the reference database. A rather optimistic estimate suggests that the number of reference393

genomes in current comprehensive databases (such as RefSeq) may account for less than394

5.319% of all species [111]. This explains why homology-based methods sometimes work395
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poorly.396

Deep learning techniques provide an alternative solution. These deep learning methods do397

not rely on similar sequences to exist in the reference database, and they allow for the modeling398

of complex correspondences between DNA sequences and corresponding species classifica-399

tions. In these deep learning methods, DNA sequences are usually encoded into numeric400

matrices first, e.g., converting a sequence into a one-hot matrix or embedding the k-mers into401

a representative matrix. For example, DeepMicrobes is a deep learning method for taxonomic402

classification of short metagenomic sequencing reads [112]. In DeepMicrobes, DNA sequences403

are segmented into substrings, each mapped to a 100-dimensional embedding vector. These404

vectors are processed by a bidirectional LSTM and a self-attention layer, which prioritizes rel-405

evant k-mers (with k = 12) for the classification task. The LSTM outputs are combined with406

attention scores to produce an output matrix that feeds into a classifier for final species and407

genus identification. DeepMicrobes outperforms traditional tools like Kraken [97], Kraken2 [98]408

(where sequences are classified using the taxonomic tree), CLARK (using target-specific k-409

mer for classification) [113] in accuracy, but requires extensive computational resources and410

dataset sizes. Moreover, adding new species also necessitates retraining the entire network.411

BERTax is another deep learning method for taxonomic classification. It classifies DNA412

sequences into three different classification levels, namely superkingdom (archaea, bacteria,413

eukaryotes, and viruses), phylum, and genus [114]. The novelty of BERTax is to assume DNA is414

a “language” and to classify the taxonomic origin based on this language understanding rather415

than by local similarity to known genomes in any database (i.e., homology). As its name sug-416

gests, BERTax is based on the state-of-the-art NLP architecture BERT (bidirectional encoder417

representations from transformers), which relies on a transformer employing the mechanism of418

self-attention. The training process of BERTax consists of two steps. First, BERT is pre-trained419

in an unsupervised manner, with the goal of learning the general structure of the genomic DNA420

“language”. Second, the pre-trained BERT model is combined with a classification layer and421

fine-tuned for the specific task of predicting classification categories. It has been shown that422

BERTax is at least comparable to state-of-the-art methods when similar species are part of423

the training data. However, for the classification of new species, BERTax significantly outper-424

forms any existing method. BERTax can also be combined with database approaches to further425

increase the prediction quality in almost all cases.426

Nanopore sequencing basecalling427

Nanopore sequencing technology has enabled inexpensive long-read sequencing with reads428

longer than a few thousand bases [115]. The basic principle of nanopore sequencing is to pass429

an ionic current through a nanopore and measure the change in current when a biomolecule430

passes through or approaches the nanopore. Information about the change in current can431

be used to identify the molecule, a process often referred to as basecalling. There are two432

challenges in basecalling. First, the current signal level is most dominantly influenced by the433

several nucleotides that reside inside the pore at any given time, rather than a single base.434

Second, DNA molecules do not translocate at a constant speed. Basecalling is conceptually435

similar to speech recognition. Both processes involve interpreting complex signals to extract436

meaningful sequences—DNA bases in the case of basecalling, and spoken words in the case437

of speech recognition. Much like the evolution of speech recognition methods, computational438
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methods for basecalling have evolved from statistical tests to hidden Markov models and finally439

deep learning models. Those methods are often referred to as basecallers.440

Various deep learning models have been developed for basecalling. Chiron is the first deep441

learning model that can translate raw electrical signal directly to nucleotide sequence [116].442

It applied a CNN to extract features from the raw signal, an RNN to relate such features in443

a temporal manner, and a connectionist temporal classification (CTC) decoder to create the444

nucleotide sequence. Here, CTC enabled us to generate a variant length base sequence for a445

fixed-length signal window through output-space searching, avoiding explicit segmentation for446

basecalling from raw signals. Similar to the Chiron architecture, SACall [117] (CATCaller [118]447

or Bonito [119]) integrated CNN with Transformer (Lite Transformer or LSTM) and CTC. Min-448

call [120] (or Causalcall [121]) directly integrated ResNet (or causal dilated CNN) with CTC.449

Halcyon used a different architecture. It combines a novel inception-block-based CNN module,450

an LSTM-based encoder, and an LSTM-based decoder using an attention mechanism. The451

inception-block-based CNN module aims to extract local features of input raw signal and re-452

duce the dimension of the input timestep axis. The LSTM-based encoder captures long-time453

dependencies in the timestep dimension and deals with the variable lengths of inputs. The454

attention mechanism allows the decoder to focus on specific parts of the input sequence when455

generating each element of the output sequence.456

All those methods mentioned so far treat basecalling as a sequence labeling task. URnano457

formalized the basecalling as a multi-label segmentation task that splits raw signals and as-458

signs corresponding labels [122]. In particular, URnano used a U-Net with integrated RNNs.459

Here, U-Net is a u-shaped CNN architecture that was originally designed for biomedical image460

segmentation [123].461

Benchmarking and architecture analysis of these deep learning-based basecallers show462

that: (1) the conditional random field (CRF) decoder is vastly superior to CTC; (2) complex463

convolutions are most robust, but simple convolutions are still very competitive; (3) LSTM is464

superior to Transformer and is depth dependent [124]. The reason why the attention mecha-465

nism in Transformer is not beneficial for basecalling could be the temporal relationships in the466

electric signal are local enough so that LSTM is sufficient for the task.467

Functional Annotation & Prediction468

Gene prediction469

After carefully selecting MAGs from the metagenome assembly, we need to identify and anno-470

tate genes by recognizing potential coding sequences within MAGs [86]. This can be achieved471

by two types ofmethods: model-basedmethods (e.g., MetaGeneMark [125], Glimmer-MG [126]472

and FragGeneScan [127] using hidden Markov models, and Prodigal [128], MetaGene [129],473

MetaGeneAnnotator [130] using dynamic programming); and deep learning-based methods474

(e.g., Meta-MFDL [131], CNN-MGP [132], and Balrog [133]). Meta-MFDL generates a rep-475

resentation vector by integrating various features (e.g., single codon usage, mono-amino acid476

usage, etc.), and subsequently trains a deep stacking network to classify coding and non-coding477

ORFs. Here, the deep stacking network is composed of a series of modules with the same or478

similar structure stacked together. For Meta-MFDL, the authors used a simple MLP with only479

one hidden layer for each module. The “stacking” is completed by combining the outputs of all480
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previous modules with the original input vector to form a new “input” vector as the input of the481

next module. CNN-MGP utilizes CNNs to automatically learn features of coding and non-coding482

ORFs from the training dataset and predict the probability of ORFs in MAGs. The authors ex-483

tracted ORFs from each metagenomics fragment and encoded ORFs numerically. Then they484

built 10 CNN models for classification. Finally, they used 10 CNN classifiers to approximate485

the gene probability for the candidate ORFs, and used a greedy algorithm to select the final486

gene set. Balrog uses a TCN to predict genes based on a large number of diverse microbial487

genomes. The authors used the state of the last node of the linear output layer of the TCN488

as representative of the binary classifier, with a value close to 1 predicting a protein-coding489

gene sequence and 0 predicting an out-of-frame sequence. It is not clear which of those gene490

prediction methods is the best. Systematic benchmarking is necessary.491

Antibiotic resistance genes identification492

Antibiotics become less effective as bacterial pathogens develop and spread resistance over493

time. This has led to the antibiotic resistance crisis, e.g., resistance may involve most or even494

all the available antimicrobial options [134]. It has been estimated that antibiotic resistance495

could cause over 10 million deaths annually by 2050 if no significant action is taken. The eco-496

nomic costs associated with these outcomes could also reach approximately 100 trillion USD497

globally [135]. Some particular ecosystems, for instance, wastewater, have been considered498

reservoirs and environmental suppliers of antibiotic resistance due to the spreading of antibiotic499

resistance gene transfer between different bacterial species [136, 137]. Computational meth-500

ods that can help identify potential resources of novel antibiotic resistance genes (ARGs) are501

particularly crucial.502

DeepARG is a deep learning approach for predicting ARGs from metagenomic data [138].503

First, genes in Uniprot were aligned to the CARD and ARDB databases using DIAMOND to504

obtain the dissimilarity representation, e.g., bit score after normalization so that scores close505

to 0 represent small distance or high similarity, and scores around 1 represent distant align-506

ments. The final feature matrix indicates the sequence similarity of the Uniprot genes to the507

ARDB and CARD genes. The feature matrix was fed into four dense fully connected hidden508

layers and a SoftMax output layer to predict the probability of the input sequence against each509

ARG category. HMD-ARG is an end-to-end hierarchical multi-task deep learning framework510

for ARG annotation [139]. HMD-ARG used a CNN model where each sequence composed of511

23 characters representing different amino acids was converted into one-hot encoding. Those512

sequence encodings were fed into six convolutional layers and four pooling layers to detect im-513

portant motifs and aggregate local and global information across input sequences. The outputs514

of the last pooling layer were flatted and fed into three fully connected layers and a Softmax515

layer to predict final labeling [139]. HyperVR is a hybrid deep ensemble learning method that516

can simultaneously predict virulence factors and ARGs [140].517

ARGNet is a two-stage deep learning approach that incorporates an unsupervised deep518

learning model autoencoder to first identify ARGs from the input genomic sequences and then519

uses a supervised deep learning model CNN to predict the antibiotic resistance category for520

sequences determined as ARGs by the autoencoder [141]. This hybrid learning approach521

enables a more efficient discovery of both known and novel ARGs. It was shown that ARGNet522

outperformed DeepARG and HMD-ARG in most of the applications and reduced inference523
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runtime by up to 57% relative to DeepARG.524

Ground-breaking LLMs initially created for NLP have found success in predicting protein525

functions. These models, referred to as protein language models (PLMs), excel at generating526

intricate semantic representations that forge meaningful links between gene sequences and527

protein functions [62–64]. FunGeneTyper is a PLM-based deep learning framework designed528

for accurate and scalable prediction of protein-coding gene functions [142]. This framework529

includes two interconnected deep learning models: FunTrans and FunRep. While these mod-530

els share a similar architecture, they are tailored for classifying functional genes at type and531

subtype levels, respectively. Both models utilize modular adapter-based architectures, incor-532

porating a few additional parameters for efficient fine-tuning of extensive PLMs. Specifically,533

utilizing the ESM-1b model (a large-scale PLM built on a 33-layer transformer architecture [62]),534

adapters are inserted into each transformer layer, serving as individual modular units that intro-535

duce new weights tuned for specific tasks. FunGeneTyper has shown exceptional performance536

in classifying ARGs and virulence factor genes. More significantly, it is a flexible deep learn-537

ing framework that can accurately classify general protein-coding gene functions and aid in538

discovering numerous valuable enzymes.539

Plasmid identification540

Plasmids are small, typically circular DNA molecules that are found in many microorganisms,541

e.g., Bactria, Archaea, and Eukaryota, which play an important role in microbial ecology and542

evolution through horizontal gene transfer, antibiotic resistance, and ecological interaction, etc.543

Identifying plasmid sequences from microbiome studies can provide a unique opportunity to544

study the mechanisms of plasmid persistence, transmission, and host specificity [143].545

Many classical machine learning methods have been proposed for plasmid identification,546

e.g., cBar [144] based on sequential minimal optimization, PlasClass [145] using Logistic Re-547

gression, PlasmidVerify [146] using Naïve Bayesian classifier, PlasForest [147], Plasmer [148],548

Plasmidhunter [149], RFPlasmid [150] and SourceFinder [151] using Random Forest. Several549

deep learning methods have also been developed for plasmid identification. For example,550

PlasFlow employs MLP for the identification of bacterial plasmid sequences in environmental551

samples [152]. It can recover plasmid sequences from assembled metagenomes without any552

prior knowledge of the taxonomical or functional composition of samples with high accuracy.553

Deeplasmid is another deep learning method for distinguishing plasmids from bacterial chro-554

mosomes based on the DNA sequence [143]. It leverages both LSTM and fully connected555

layers to generate features, which are then concatenated and passed to another block of fully556

connected layers to generate the final output — the Deeplasmid score y ∈ [0, 1]. The higher the557

score is for the sequence, the more likely it is to be a true plasmid. plASgraph2 is a new deep558

learning method for identifying plasmid contigs in fragmented genome assemblies built from559

short-read data [153]. The innovation of plASgraph2 lies in its use of GCN and the assembly560

graph to propagate information from neighboring nodes, resulting in more accurate classifica-561

tion. The GCN model consists of a set of graph convolutional layers designed to propagate562

information from neighboring contigs within the assembly graph. plASgraph2 generates two563

scores for each graph node: a plasmid score and a chromosomal score, which are used to564

assess whether a contig is likely derived from a plasmid, chromosome, or both.565

Note that both plasmids and viruses are mobile genetic elements — a type of genetic ma-566
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terial that can move around within a genome or be transferred from one species to another.567

Mobile genetic elements are often referred to as selfish genetic elements, because they have568

the ability to promote their own transmission at the expense of other genes in the genome.569

Mobile genetic elements are found in all organisms. The set of mobile genetic elements in an570

organism is called a mobilome, including viruses, plasmids, transposons, integrons, introns,571

etc. Recently, deep learning methods have been developed to simultaneously identify both572

viruses and plasmids, the two major components of the mobilome. For example, PPR-Meta is573

the first tool that can simultaneously identify phage and plasmid fragments from metagenomic574

assemblies efficiently and reliably [154]. PPR-Meta leveraged a novel architecture, Bi-path575

CNN, to improve the performance for short fragments. The Bi-path CNN leverages both base576

and codon information to enhance performance: the “base path” is effective for extracting se-577

quence features of noncoding regions, while the “codon path” is useful for capturing features578

of coding regions. geNomad is a hybrid framework that combines the strengths of alignment-579

free and alignment-based models for concurrent identification and annotation of both plasmids580

and viruses in sequencing data [155]. To achieve that, geNomad processes user-provided nu-581

cleotide sequences via two distinct branches. In the sequence branch (“alignment-free”), the582

inputs are one-hot encoded and passed through an IGLOO neural network, which evaluates583

them by identifying non-local sequence motifs. In the marker branch (“alignment-based”), the584

proteins encoded by the input sequences are annotated with markers specific to chromosomes,585

plasmids, or viruses. Here, the key idea behind the IGLOO neural network is to leverage the586

relationships between “non-local patches” sliced from feature maps generated by successive587

convolutions to effectively represent long sequences, allowing it to handle both short and long588

sequences efficiently, unlike traditional RNNs which struggle with very long sequences [156].589

Biosynthetic gene clusters prediction590

Natural products are chemical compounds that serve as the foundation for numerous therapeu-591

tics in the pharmaceutical industry [157]. In microbes, these natural products are produced by592

clusters of colocalized genes known as biosynthetic gene clusters (BGCs) [158]. Advances in593

high-throughput sequencing have led to a surge in the availability of complete microbial isolate594

genomes and metagenomes, offering a great opportunity to discover a vast number of new595

BGCs. Deep learning models have been very useful in this genome mining effort [159–162].596

For example, DeepBGC and its extension employ (1) Pfam2vec (a word2vec-like word em-597

bedding model, which is a shallow neural network with a single hidden layer); (2) a Bidirec-598

tional LSTM (a classical RNN), which offers the advantage of capturing short- and long-term599

dependencies between adjacent and distant genes. e-DeepBGC still leverages those neural600

networks, but improves DeepBGC in the following aspects [159]. First, e-DeepBGC employs601

Pfam names, Pfam domain summary, Pfam domain clan information. This additional informa-602

tion is used to create new embedding of each Pfam domain by providing more biological in-603

formation than that encoded by Pfam2vec which only uses the Pfam names. Second, a novel604

data augmentation step is introduced to overcome the limited number of BGCs with known605

functional classes.606

BiGCARP is a self-supervised neural network masked language model [161]. It is based on607

the convolutional autoencoding representations of proteins (CARP), a masked language model608

of proteins. That’s why it is called Biosynthetic Gene CARP (or BiGCARP). The CARP is based609
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on CNN, and has been shown to be competitive with transformer-based models for protein610

sequence pretraining [163]. SanntiS (Secondary metabolite gene cluster annotations using611

neural networks trained on InterPro signatures) is a newmethod for BGCprediction [164]. At the612

core of SanntiS is the detection model, a neural network with a one-dimensional convolutional613

layer, plus a bidirectional LSTM. This is quite similar to DeepBGC. The authors claimed that614

SanntiS outperforms DeepBGC, but it was not compared with BiGCAPR. Therefore, systematic615

benchmarking work is warranted.616

16S rRNA copy number prediction617

The 16S rRNA gene is highly conserved across different bacterial species but contains hyper-618

variable regions that provide species-specific signatures. By sequencing these regions, we619

can determine the composition and diversity of bacterial communities in various environments.620

Yet, different bacterial species can have varying numbers of 16S rRNA gene copies (ranging621

from 1 to 21 copies/genome), which can lead to biases in quantifying microbial communities if622

not accounted for [165]. To accurately estimate the relative abundance of bacterial species in623

a microbiome sample, we need to adjust the proportion of 16S rRNA gene read counts by the624

inverse of the 16S rRNA gene copy number. Experimentally measuring the 16S rRNA gene625

copy numbers through whole genome sequencing or competitive PCR is expensive and/or626

culture-dependent. To resolve this limitation, based on the hypothesis that 16S rRNA gene627

copy number correlates with the phylogenetic proximity of species, many bioinformatics tools628

have been developed to infer 16S rRNA gene copy numbers from taxonomy or phylogeny [166–629

169]. Yet, an independent assessment demonstrated that regardless of the method tested, 16S630

rRNA gene copy numbers could only be accurately predicted for a limited fraction of taxa [170].631

Recently, a deep learning-basedmethod ANNA16 was developed to predict 16S rRNA gene632

copy numbers directly from DNA sequences, avoiding information loss in taxonomy classifica-633

tion and phylogeny [171]. Essentially, ANNA16 treats the 16S GCN prediction problem as a634

regression problem. A stacked ensemblemodel (mainly consisting of MLP and SVM) is the core635

of ANNA16. The 16S rRNA gene sequences were first preprocessed with K-merization. The636

resulting k-mer counts (with k=6) and the existing 16S rRNA gene copy number data (retrieved637

from rrnDB database) were used to train the stacked ensemble model. Based on 27,579 16S638

rRNA gene sequences and copy number data, it has been shown that ANNA16 outperforms639

previous methods (i.e., rrnDB, CopyRighter, PAPRICA, and PICRUST2). We expect that in640

the near future more deep learning-based methods will be developed to solve this fundamental641

problem in microbiology and microbiome research.642

Mutation/evolution prediction643

Predicting evolution has been a longstanding objective in evolutionary biology, offering sig-644

nificant implications for strategic pathogen management, genome engineering, and synthetic645

biology. In microbiology, evolution prediction has been studied for several microorganisms. For646

instance, Wang et al. used the evolutionary histories of Escherichia coli to train an ensemble647

predictor to predict which genes are likely to have mutations given a novel environment [172].648

To achieve that, they first created a training dataset consisting of more than 15,000 mutation649

events forE. coli under 178 distinct environmental settings reported in 95 publications. For each650

18



mutation event, they recorded its genome position with respect to a reference genome and the651

mutation event type (e.g., single-nucleotide polymorphisms (SNPs), deletions, insertions, am-652

plifications, inversions). Then, they integrated a deep learning model MLP and two classical653

machine learning models, Support Vector Machine and Naive Bayes, to build an ensemble654

predictor to predict the mutation probability of any given gene under a new environment. The655

input of the ensemble predictor consists of 83 binary variables (features) that capture attributes656

related to the strain, medium, and stress from experiments. The model output is a binary vari-657

able that captures the presence/absence of mutation(s) in any given gene, computed from the658

predicted probability of this gene’s mutation event. This work clearly illustrated how the evo-659

lutionary histories of microbes can be utilized to develop predictive models of evolution at the660

gene level, clarifying the impact of evolutionary mechanisms in specific environments. One661

limitation of this approach is that those 83 features were manually selected, which relies on662

domain knowledge.663

Another interesting work is EVEscape, a generalizable modular framework that can predict664

viral mutations based on pre-pandemic data [173]. It has been shown that EVEscape, if trained665

on sequences available before 2020, is as accurate as high-throughput experimental scans in666

predicting pandemic variation for SARS-CoV-2 and is generalizable to other viruses (such as667

influenza, HIV, Lassa, and Nipah). The EVEscape framework is based on the assumption that668

the probability that a viral mutation will induce immune escape is the joint probability of three669

independent events: (1) this mutation will maintain viral fitness (‘fitness’ term); (2) the mutation670

will occur in an antibody-accessible region (‘accessibility’ term); and (3) the mutation will disrupt671

antibody binding (‘dissimilarity’ term). All three terms can be computed from pre-pandemic data672

sources, providing early warning time critical for vaccine development. The accessibility and673

dissimilarity terms are computed using biophysical information. The fitness term is computed674

via the deep learning of evolutionary sequences. In particular, the authors computed the fitness675

term using EVE [174], a deep generative model (i.e., VAE) trained on evolutionarily related676

protein sequences that learn constraints underpinning structure and function for a given protein677

family.678

Long-term and system-level evolution has also been systematically examined. Konno et679

al. clearly demonstrated that the evolution of gene content in metabolic systems is largely pre-680

dictable by using ancestral gene content reconstruction andmachine learning techniques [175].681

They first inferred the gene content of the ancestral species using the genomes of 2894 bacterial682

species (encompassing 50 phyla) and a reference phylogeny. Then they applied two classical683

machine learning models (logistic regression and random forest) to predict which genes will be684

gained or lost in metabolic pathway evolution, using the gene content vector of the parental685

node in the phylogenetic tree. Their framework, Evodictor, successfully predicted gene gain686

and loss evolution at the branches of the reference phylogenetic tree, suggesting that evolu-687

tionary pressures and constraints on metabolic systems are universally shared. It would be688

interesting to see if deep learning techniques can be applied to predict metabolic system evo-689

lution.690

Microbe-X Interactions691

Recent advancements in microbiology and microbiome research have significantly deepened692

our understanding of the complex interactions between the microbes and the host, diseases,693
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and drugs. In this section, we will discuss how deep learning-based methods have facilitated694

the inference of those complex interactions.695

Microbe-host interactions696

A disrupted gut microbiome has been linked to a wide variety of diseases, yet the mechanisms697

by which these microbes affect human health remain largely unclear. Protein-protein interac-698

tions (PPIs) are increasingly recognized as a key mechanism through which gut microbiota699

influence their human hosts [31, 176–178]. A vast and largely unexplored network of microbe-700

host PPIs may play a significant role in both the prevention and progression of various diseases.701

Future research is needed to further uncover these interactions and their potential therapeutic702

implications.703

Many machine learning methods have been developed to predict PPIs. Basically, they can704

be grouped into three categories: sequence-based, structure-based, and network-based [31].705

Sequence-based methods utilize amino acid sequences to predict PPIs. For instance, PIPR706

employs a deep residual recurrent CNN within a siamese architecture to select local features707

and maintain contextual information without predefined features [179]. Similarly, DeepPPISP708

integrates global and contextual sequence features by applying a sliding window approach to709

neighboring amino acids and utilizing a TextCNN architecture to treat the protein sequence as710

a one-dimensional image for global feature extraction [180]. Additionally, hybrid approaches711

have been developed for microbe-host PPI prediction, combining a denoising autoencoder (un-712

supervised learning) with logistic regression (supervised learning) [181]. Another model, Deep-713

Viral, enhances performance by incorporating infectious disease phenotypes alongside protein714

sequences for microbe-host PPI prediction [182].715

Structure-based methods leverage the three-dimensional structures of proteins to predict716

PPIs. For example, DeepInterface is one of the first methods to use 3D CNNs for predicting PPI717

interfaces at the atomic level [183]. Different from DeepInterface, MaSIF (Molecular Surface In-718

teraction Fingerprints) uses geometric deep learning to process non-Euclidean data, breaking719

proteins into overlapping patches with specific physicochemical properties to predict PPI inter-720

faces [184]. Graph-based neural network methods, where nodes represent atoms or amino721

acid residues linked by edges based on spatial proximity or chemical bonds, apply convolu-722

tional filters on the graph representation of proteins to predict interactions while being invariant723

to rotation and translation. PECAN further integrates a graph CNN with an attention mecha-724

nism and transfer learning, using sequence-based conservation profiles and spatial distance725

features to predict antigen-antibody interactions [185].726

Network-based methods consider the PPI prediction problem as a link prediction task, using727

inferringmissing links based on existing network knowledge. Thesemethods have been bench-728

marked across various interactomes, demonstrating that advanced similarity-based methods,729

which leverage the network characteristics of PPIs, outperform other link prediction meth-730

ods [186]. These general-purpose methods can be tailored for microbe-host PPI prediction.731

Moreover, integrating sequence-based, structure-based, and network-based approaches can732

leverage the strengths of each approach, potentially leading to more accurate and robust PPI733

predictions.734

Of course, the microbe-host interactions are not limited to PPIs. Besides PPIs, microbes735

can interact with the host through many other mechanisms, including: (1) Gene regulation:736
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Microbial metabolites can influence host gene expression via epigenetic changes or signaling737

pathways. (2) Immune modulation: Microbes interact with the host immune system, educating738

immune cells and promoting tolerance or inflammation. (3) Metabolite production: Gut mi-739

crobes produce metabolites like short-chain fatty acids (SCFAs), which influence host energy740

metabolism, immune function, and gut health. (4) Gut barrier function: Microbes can strengthen741

or disrupt the gut barrier, affecting intestinal permeability.742

Machine learning methods have been developed to study some of those mechanisms. For743

example, Morton et al. developed mmvec, a neural-network-based method to analyze microbe-744

metabolite interactions [187]. It takes microbial sequence counts and metabolite abundances745

from various samples as the input and outputs the estimated conditional probabilities of observ-746

ing a metabolite given the presence of a specific microbe. This method is similar to a popular747

word embedding method in NLP, i.e., word2vec, which is a shallow neural network with a single748

hidden layer [188]. Note that in the original application of word2vec, the skip-gram technique749

(i.e., creating word embeddings that focus on predicting surrounding words based on a specific750

word or target word) was employed to account for the sequential nature of the text. For mi-751

crobiome and metabolome data, there is no clear sequential nature. Therefore, in mmvec, the752

skip-gram was replaced by multinomial sampling, where a single microbe is randomly sampled753

from amicrobiome sample at each gradient descent step. Morton et al. evaluatedmmvec’s per-754

formance against traditional methods like Pearson’s, Spearman’s, SparCC, and SPIEC-EASI755

correlations, and found it demonstrated greater specificity and sensitivity, especially when ap-756

plied to complicated datasets with vast amounts of microbiome and metabolomics information.757

Microbe-disease associations758

The exploration of microbe-disease associations (MDAs) is crucial for understanding various759

health conditions and tailoring effective treatments. Traditional studies directly correlate mi-760

crobial features with disease outcomes, creating MDA databases such as HMDAD [189] and761

mBodyMap [190]. Advanced deep-learning methods have also been developed to infer new762

MDAs, including NinimHMDA [191], LGRSH [192], BPNNHMDA [193], and DMFMDA [194].763

NinimHMDA uses a multiplex heterogeneous network constructed from HMDAD and other764

biological databases [191]. By integrating biological knowledge of microbes and diseases rep-765

resented by various similarity networks and utilizing an end-to-end GCN-based mining model,766

it predicts different types of HMDAs (elevated or reduced) through a one-time model training.767

Predicting HMDAs is akin to solving a link-prediction problem within a multiplex heterogeneous768

network. In terms of predictive performance, NinimHMDA was compared with several existing769

methods such as DeepWalk [195], metapath2vec [196].770

Similar to NinimHMDA, LGRSH [192] and BPNNHMDA [193] were developed for the same771

predictive task but with different deep-learning architectures. LGRSH applies graph repre-772

sentation techniques to predict associations, using calculated similarities between microbes773

and diseases [192]. BPNNHMDA uses a back-propagation neural network to predict potential774

associations [193]. DMFMDA employs deep matrix factorization and Bayesian Personalized775

Ranking to predict associations [194]. Unfortunately, we haven’t seen any benchmark studies776

that systematically compare those deep learning methods in predicting microbiome-disease777

associations.778

Very recently, thanks to the advancements in large language models, extraction of MDAs779
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directly from biomedical literature has become much easier than before. For example, Karkera780

et al. demonstrated that pre-trained language models (specifically GPT-3, BioMedLM, and781

BioLinkBERT), when fine-tuned with domain and problem-specific data, can achieve state-of-782

the-art results for extracting MDAs from scientific publications [197]. The extracted MDAs will783

further expand the human MDA database. We expect that those deep learning methods will be784

more powerful with an expanded human MDA database.785

Deep learning techniques have also been leveraged to study the association between mi-786

crobes and specific diseases. For instance, MICAH is a deep learning method based on a787

heterogeneous graph transformer to study the relationships between intratumoral microbes788

and cancer tissues [198]. The inputs of MICAH are the species abundance matrix and sample789

labels (i.e., cancer types of samples). From the inputs, MICAH constructs a heterogeneous790

group with two types of nodes (microbes and samples), and three types of edges (species-791

species metabolic edges based on the NJS16 database [199], species-species phylogenetic792

edges based on the NCBI Taxonomy database, species-sample edges representing the rela-793

tive abundance of a species in a sample). Then, MICAH used a two-layer graph transformer to794

update node embeddings and a fully connected layer based on updated node embeddings to795

perform sample node (cancer type) classification. Finally, MICAH extracts the attention scores796

of species to samples from the well-trained model to output subsets of microbial species asso-797

ciated with different cancer types. This framework significantly refines the number of microbes798

that can be used for follow-up experimental validation, facilitating the study of the relationship799

between tumors and intratumoral microbiomes.800

Microbe-drug associations801

Accumulated clinical studies show that microbes living in humans interact closely with human802

hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become803

novel targets for the development of antibacterial agents. Therefore, screening of microbe–804

drug associations can benefit greatly drug research and development. With the increase of805

microbial genomic and pharmacological datasets, we are greatly motivated to develop effective806

computational methods to identify new microbe–drug associations.807

Many deep-learning methods have been recently developed to identify microbe–drug as-808

sociations, e.g., GARFMDA [200], GCNATMDA [201], LCASPMDA [202], MCHAN [203],809

MDSVDNV [204], NMGMDA [205], OGNNMDA [206], STNMDA [207], etc. Most of the deep810

learning methods can be divided into six different categories based on the deep learning model811

they used [208], e.g., CNN-based, GCN-based autoencoder, Graph Attention Network(GAT)-812

based autoencoder, Collective Variational Autoencoder (CVAE), Sparse Autoencoder (SAE). A813

recent method STNMDA is an exception [209]. STNMDA integrates a Structure-Aware Trans-814

former (SAT) with an MLP classifier to infer microbe-drug associations. It begins with a “random815

walk with a restart” approach to construct a heterogeneous network using Gaussian kernel sim-816

ilarity and functional similarity measures for microorganisms and drugs. This heterogeneous817

network was then fed into the SAT to extract attribute features and graph structures for each818

drug and microbe node. Finally, the MLP classifier calculated the probability of associations819

betweenmicrobes and drugs. A systematic comparison of those existing methods using bench-820

mark datasets is warranted.821
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Microbial Ecology822

Deciphering inter-species interactions and assembly rules of microbial communities are funda-823

mental but challenging questions in microbial ecology. Efforts based on population dynamics824

models have been made. However, parameterizing those dynamics models is very challenging825

[210]. Deep learning approaches can overcome such challenges by learning the assembly rules826

implicitly without knowing the population dynamics. Especially, with the prominent progress in827

metagenomics and next-generation sequence technologies, collecting large-sample size data828

is feasible, providing sufficient diverse communities to train deep learning models.829

Microbial interactions prediction830

Microbes interact with each other and influence each other’s growth in various ways. The mi-831

crobial interactions can be represented as a directed, signed, and weighted graph, i.e., the eco-832

logical network of the microbial community. Inferring the microbial interactions is important to833

understand the systems-level properties and dynamics of the microbial communities. Typically,834

this is achieved by analyzing high-quality longitudinal [211–215], or steady-state data [216],835

which is hard to obtain for large-scale microbial communities. Recently, the traditional random836

forest classifier was proposed to tackle this issue [217]. For each species, a trait is represented837

as a binary code in its trait vector. For each species pair within a community, a composite trait838

vector is created by concatenating the trait vectors of both species. This composite vector is839

then related to the observed responses of the interacting species. All interactions observed are840

utilized to train the classifier, which predicts the results of unobserved interactions. This ap-841

proach has been evaluated in three case studies: a mapped interaction network of auxotrophic842

Escherichia coli strains, a soil microbial community, and a comprehensive in silico network illus-843

trating metabolic interdependencies among 100 human gut bacteria. The results demonstrated844

that having partial knowledge of a microbial interaction network, combined with trait-level data845

of individual microbial species, can lead to accurate predictions of missing connections within846

the network, as well as propose potential mechanisms for these interactions. It would be very847

interesting to explore if deep learing methods can further improve the prediction of microbial848

interactions.849

Microbial composition prediction850

cNODE (compositional neural ordinary differential equation) is a deep learning method that can851

predict the community compositions from the species assemblages for a given ecological habi-852

tat of interest, e.g., the human gut [218]. All microbial species that can inhabit this habitat form853

a species pool or meta-community. A microbiome sample collected from this habitat can be854

considered as a local community assembled from the meta-community. The species assem-855

blage of this sample is characterized by a binary vector, where the entry indicates if species-i is856

present (or absent) in this sample. The community composition is characterized by a composi-857

tional vector, where the ith-entry represents the relative abundance of species-i. cNODE aims858

to implicitly learn the community assembly rules by learning the mapping from species assem-859

blage into community composition. To learn such a mapping, cNODE used Neural ODE [219],860

which can be interpreted as a continuous limit of the ResNet architecture [84]. Extensive simu-861

lations suggest that the sample size in the training data acquired to reach a relatively accurate862
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prediction should be twice the species pool size. cNODE has been successfully applied to pre-863

dict compositions of the ocean and soil microbiota, Drosophila melanogaster gut microbiota,864

and the human gut and oral microbiota.865

Instead of relying on species assemblage, MicrobeGNN employs a graph neural network-866

based approach to predict the microbial composition at steady state from the genomes of mixed867

bacteria, with each species represented by a node [220]. Bacterial genomes are encoded into868

binary feature vectors that indicate the presence or absence of specific genes. Two types of869

GNNs, GraphSAGE [221] and MPGNN [222], are utilized for node and edge computations,870

respectively. Due to the lack of prior knowledge regarding the exact graph topology, fully con-871

nected graphs are employed, allowing each node to influence all other nodes within a single872

message-passing step. The results demonstrate that GNNs can accurately predict the relative873

abundances of bacteria in communities based on their genomes across various compositions874

and sizes.875

Note that neither cNODE nor MicrobeGNN utilizes environmental or host factors in predict-876

ing microbial compositions. Incorporating environmental/host factors into deep learning models877

might further improve the accuracy of microbial composition predictions.878

Keystone species identification879

By implicitly learning the community assembly rules, cNODE or its variant enables us to pre-880

dict the new community compositions after adding or removing any species or any species881

combinations via thought experiments. In particular, predicting the impact of species’ removal882

facilitates the identification of keystone species that have a disproportionately large effect on883

the structure or function of their community relative to their abundance [223]. Note that the884

impact of a species’ removal naturally depends on the resident community, i.e., a species may885

be a keystone in one community but not necessarily a keystone in another community. In other886

words, the keystoneness of a species can be highly community-specific.887

The DKI (Data-driven Keystone species Identification) framework is based on cNODE [223].888

In the DKI framework, the keystoneness of species in microbial communities was defined as the889

product of two components: the impact component and the biomass component. The impact890

component quantifies the impact of species’s removal on the structure of community, while the891

biomass component captures how disproportionate this impact is.892

TheDKI framework was validated using synthetic data generated from a classical population893

dynamics model in community ecology, i.e., the Generalized Lotka-Volterra (GLV) model, and894

then applied to compute the keystoneness of species in the human gut, oral microbiome, and895

the soil and coral microbiome. It was found that those taxa with high median keystoneness896

across different samples display strong community specificity, and some of them have been897

reported as keystone taxa in literature. Instead of studying the impact of removing a single898

species, the DKI framework can be extended to study the impact of removing any species899

combinations, and hence study keystone duos or trios, etc, in complex microbial communities.900

Instead of studying the impact of removing a single species, the DKI framework can be extended901

to study the impact of removing any species combinations, and hence study keystone duos or902

trios, etc, in complex microbial communities.903
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Colonization outcome prediction904

Microbial communities are typically subject to various environmental perturbations, e.g., an-905

tibiotic administration and diet, which can impact the balance of the microbial ecosystem and906

cause or exacerbate disease [224]. Machine learning models can be trained on some observed907

communities and make predictions for those unobserved communities upon similar perturba-908

tions. For instance, MLP has been used to predict the temporal gut community composition909

of termite perturbed by six different lignocellulose food sources [225]. In addition to predicting910

the impact of diet change on microbial composition, machine learning methods have also been911

used to predict the colonization outcomes of exogenous species for complex microbial commu-912

nities [226]. Those machine learning methods treat the baseline (i.e., pre-invasion) taxonomic913

profile as inputs and the steady state abundance of the invasive species as output or mathe-914

matically, learn the mapping from the baseline taxonomic profile of a community to the steady915

state abundance of the invading species. Validation of the approach using synthetic data and916

two commensal gut bacteria species Enterococcus faecium and Akkermansia muciniphila in917

hundreds of human stool-derived in vitro microbial communities, showed that machine learn-918

ing models, including random forest, linear regression/logistic regression, and neural ODE can919

predict not only the binary colonization outcome but also the final abundance of the invading920

species [226].921

Fecal microbiota transplantation (FMT) has shown a high success rate for the treatment of922

recurrent Clostridioides difficile infection (rCDI). However, the mechanisms and dynamics dic-923

tating which donor microbiomes can engraft in the recipient are poorly understood. Traditional924

machine learning models, e.g., random forest, have been applied to predict the post-FMT bac-925

terial species engraftment [227]. We expect that, given high-quality training data, deep learning926

methods can also be used to predict species engraftment and outperform traditional machine927

learning methods.928

Microbial dynamics prediction929

A fundamental question in microbial ecology is whether we can predict the temporal behav-930

iors of complex microbial communities. Traditionally, this problem is addressed using system931

identification or network reconstruction techniques, which assume specific population dynamics932

described by a set of ordinary differential equations. For example, the classical GLV model in933

community ecology, which considers pair-wise interactions, can be represented as a directed,934

signed, and weighted graph, often referred to as an ecological network. Numerous methods935

have been developed to infer these dynamics and reconstruct the ecological network using936

temporal or steady-state data [210]. However, this network-based approach typically assumes937

that inter-species interactions are exclusively pair-wise, which may not reflect the true nature938

of complex microbial interactions.939

Recently, deep learning techniques have been deployed to predict temporal behaviors of940

microbiomes. For example, in 2022, Baranwal et al. applied LSTM (a classical variant of RNN)941

to learn from experimental data on temporal dynamics and functions of microbial communities942

to predict their future behavior and design new communities with desired functions [228]. Using943

a significant amount of experimental data, they found that this method outperforms the widely944

used GLV model in community ecology. In 2023, Thompson et al. proposed the Microbiome945
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Recurrent Neural Network (MiRNN) architecture. Inputs to theMiRNN at time step t1 include the946

state of species abundances, metabolite concentrations, control inputs, and a latent vector that947

stores information from previous steps and whose dimension determines the flexibility of the948

model.The output from each MiRNN block is the predicted system state and the latent vector949

at the next time step t. To avoid the physically unrealistic emergence of previously absent950

species, a constrained feed-forward neural network outputs zero-valued species abundances951

if species abundances at the previous time step were zero. The authors demonstrated that952

MiRNN yielded comparable prediction performance to the LSTM model, but with more than a953

50,000 fold reduction in the number of model parameters.954

These works are of broad interest to those working on microbiome prediction and design to955

optimize specific target functions. So far, LSTM and MiRNN have been just applied to synthetic956

communities with 25 diverse and prevalent human gut species and 4 major health-relevant957

metabolites (acetate, butyrate, lactate, and succinate). Its potential to large systems, e.g., the958

human gut microbiome, with thousands of species and metabolites would be interesting to959

explore. The quality of the training data would be crucial.960

In addition to methods specifically designed for predicting microbial dynamics, existing961

methodologies developed for multiple time series forecasting (MTSF) can also be potentially962

employed. For example, MTSF-DG is a model capable of learning historical relation graphs963

and predicting future relation graphs to capture dynamic correlations [229]. Evaluating the per-964

formance of these general time series prediction methods in the context of microbial dynamics965

prediction would be very interesting..966

Microbiome data simulation and imputation967

Often, we need to generate synthetic microbiome data for testing computational methods or968

imputing missing data points, and there are two primary approaches to achieve this. First, data969

can be generated from statistical models, such as SparseDOSSA [230], or various population970

dynamics models using existing software, e.g., miaSim [231]. miaSim is particularly versatile,971

offering users the ability to simulate data based on specific assumptions and scenarios using972

four widely recognized population dynamics models: the stochastic logistic model, MacArthur’s973

consumer-resource model, Hubbell’s neutral model, and the GLV model, along with several of974

their derivations. Second, generative deep learning techniques, such as generative adversar-975

ial networks (GANs), can be employed to create synthetic data. Recent advancements have976

introduced several GAN-based methods for generating synthetic microbiome data. For exam-977

ple, MB-GAN [232] learns latent spaces from observed microbial abundances and generates978

simulated abundances based on these learned distributions. DeepBioGen [233]: This model979

captures visual patterns of sequencing profiles and generates realistic human gut microbiome980

profiles. Both MB-GAN and DeepBioGen are designed for data augmentation of single time981

point microbiome datasets. For longitudinal microbiome data imputation, DeepMicroGen offers982

a robust solution [234]. This method extracts features that incorporate phylogenetic relation-983

ships between taxa using CNN. These features are subsequently processed by a bidirectional984

RNN-based GAN model, which generates imputed values by learning the temporal dependen-985

cies between observations at different time points. These advanced methods enhance our986

ability to generate high-fidelity synthetic microbiome data, crucial for developing and testing987

new analytical tools in microbiome research.988
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Microbial source tracking989

Determining the contributions of various environmental sources (“sources”) to a specific micro-990

bial community (“sink”) represents a traditional challenge in microbiology, commonly referred991

to as microbial source tracking (MST). Addressing this MST challenge will not only enhance992

our understanding of microbial community formation but also has significant implications in ar-993

eas like pollution management, public health, and forensics. MST techniques are generally994

categorized into two types: target-based methods, which concentrate on identifying source-995

specific indicator species or chemicals, and community-based methods, which analyze com-996

munity structures to assess the similarity between sink samples and potential source envi-997

ronments. With next-generation sequencing becoming standard for community assessment998

in microbiology, numerous community-based computational methods, known as MST solvers,999

have been developed and applied to various real-world datasets, showcasing their effective-1000

ness across different scenarios.1001

Here, we introduce some representative MST solvers. The first solver is based on the1002

classification analysis in machine learning, for example, using the random forest classifier. In1003

this case, each source represents a distinct class, and the classifier will classify the sink into1004

different classes with different probabilities. The probabilities of the sink belonging to the dif-1005

ferent classes can be naturally interpreted as the mixing proportions or contributions of those1006

sources to the sink. Beyond the simple classification analysis, more advanced statistical meth-1007

ods based on Bayesian modeling have been developed. For example, SourceTracker is a1008

Bayesian MST solver that explicitly models the sink as a convex mixture of sources and in-1009

fers the mixing proportions via Gibbs sampling [235]. FEAST (fast expectation�maximization1010

for microbial source tracking [236]) is a more recent statistical method. FEAST also assumes1011

each sink is a convex combination of sources. But it infers the model parameters via fast ex-1012

pectation�maximization, which is much more scalable than Markov Chain Monte Carlo used1013

by SourceTracker. STENSL (microbial Source Tracking with ENvironment SeLection) is also1014

based on expectation-maximization [237]. STENSL enhances traditional MST analysis through1015

unsupervised source selection and facilitates the sparse identification of hidden source environ-1016

ments. By integrating sparsity into the estimation of potential source environments, it boosts1017

the accuracy of true source contributions and considerably diminishes the noise from non-1018

contributing sources. ONN4MST is a deep learning method based on the Ontology-aware Neu-1019

ral Network (ONN) to solve large-scale MST problems [238]. The ONNmodel promotes predic-1020

tions in line with the “biome ontology.” Essentially, it leverages biome ontology information to1021

represent the relationships among biomes and to estimate the distribution of different biomes1022

within a community sample. The authors demonstrated clear evidence that ONN4MST out-1023

performed other methods (e.g., SourceTracker and FEAST) with near-optimal accuracy when1024

source tracking among 125,823 samples from 114 niches.1025

Many MST solvers draw inspiration from the analogy between the MST problem and esti-1026

mating the mixing proportions of conversation topics in a test document. It has been pointed1027

out that this analogy is problematic [239]. In topic modeling [240], a specialized area within1028

NLP, the objective is to uncover the abstract “topics” present in a set of documents, which can1029

be viewed as static or “dead.” In contrast, MST typically involves dynamic, thriving microbial1030

communities where ecological dynamics significantly influence community assembly and their1031

state, that is, the microbial composition. Given these ecological dynamics, a sink community1032
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cannot merely be viewed as a convex mixture of known and unknown sources. Indeed, through1033

numerical simulations, analytical calculations, and real data analysis, compelling evidence has1034

been presented that ecological dynamics impose fundamental challenges in community�based1035

MST [239]. Thus, results from current MST solvers require very cautious interpretation.1036

Metabolic Modeling1037

Metabolic modeling has become a crucial component inmicrobiology andmicrobiome research,1038

significantly enhancing our understanding of microbial interactions and their effects on envi-1039

ronments or host well-being. This approach integrates computational methods with biological1040

insights, facilitating the prediction, analysis, and comprehension of metabolic capabilities and1041

interactions within microbial communities.1042

Gap filling: inferring missing reactions1043

Genome-scale metabolic models (GEMs) have substantially advanced our understanding of1044

the complex interactions among genes, reactions, and metabolites. These models, integrated1045

with high-throughput data, support applications in metabolic engineering and drug discovery.1046

For instance, AGORA2 (Assembly of Gut Organisms through Reconstruction and Analysis,1047

version 2), representing the cutting-edge GEM resource for human gut microorganisms, com-1048

prises 7,302 strains and provides strain-resolved capabilities for drug degradation and bio-1049

transformation for 98 drugs [218]. This resource has been meticulously curated using com-1050

parative genomics and extensive literature reviews. AGORA2 facilitates personalized, strain-1051

resolved modeling by predicting how patients’ gut microbiomes convert drugs. Additionally,1052

AGORA2 acts as a comprehensive knowledge base for the human microbiome, paving the1053

way for personalized and predictive analyses of host–microbiome metabolic interactions. Re-1054

construction of GEMs typically require extensive manual curation to improve their quality for1055

effective use in biomedical applications. Yet, due to our imperfect knowledge of metabolic pro-1056

cesses, even highly curated GEMs could have knowledge gaps (e.g., missing reactions). Vari-1057

ous optimization-based gap-filling methods have been developed to identify missing reactions1058

in draft GEMs [241–243].1059

The existing gap-filling methods often require experimental data, but such experimental1060

data is scarce for non-model organisms, limiting tool utility. If not using any domain knowl-1061

edge, gap-filling of GEMs or inferring missing reactions in GEMs purely from the topology of1062

the GEM can be treated as a hyperlink prediction problem [244]. As we know, we can always1063

consider a metabolic network or any biochemical reaction network as a hypergraph, where1064

metabolites are nodes, reactions are hyperlinks. For instance, Chen et al. present the Cheby-1065

shev spectral hyperlink predictor (CHESHIRE), a deep learning-based method for identifying1066

missing reactions in GEMs based on the topology of metabolic networks [245]. CHISHIRE1067

leverages the Chebyshev spectral GCN on the decomposed graph of a metabolic network to1068

refine the feature vector of each metabolite by incorporating the features of other metabolites1069

from the same reaction. As a variant of GCN, Chebyshev spectral GCN was designed to ef-1070

ficiently process data represented as graphs [246]. It leverages spectral graph theory and1071

Chebyshev polynomials to perform graph convolutions in the spectral domain. It has been1072

shown that CHESHIRE outperforms other topology-based hyperlink rediction methods, e.g.,1073
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Neural Hyperlink Predictor (NHP) [247] and C3MM Clique Closure-based Coordinated Matrix1074

Minimization (C3MM) [248] in predicting artificially removed reactions over 926GEMs (including1075

818 GEMs from AGORA). Furthermore, CHESHIRE is able to improve the phenotypic predic-1076

tions of 49 draft GEMs for fermentation products and amino acids secretions. Both types of1077

validation suggest that CHESHIRE is a powerful tool for GEM curation..1078

Retrosynthesis: breaking down a target molecule1079

Note that gap-filling is the strategy used to complete metabolic networks when certain reactions1080

or pathways are missing. It identifies reactions that need to be added to a metabolic model to1081

ensure the system can produce all required metabolites and metabolic phenotypes. Retrosyn-1082

thesis is a complementary strategy. Retrosynthesis involves iteratively breaking down a target1083

molecule into simpler molecules that can be combined chemically or enzymatically to produce1084

it. Eventually, all the required compounds are either commercially available or present in the1085

microbial strain of choice. Retrosynthesis is used to map out potential biosynthetic pathways1086

to produce a desired compound by analyzing reaction steps in reverse. While gap-filling aims1087

to ensure the completeness of the metabolic network for overall functionality, retrosynthesis1088

focuses on pathway construction for a specific product. Recently, a reinforcement learning1089

method RetroPath RL was developed for bioretrosynthesis [249]. RetroPath RL is based on1090

the Monte Carlo Tree Search (MCTS), which is a heuristic search algorithm combining the prin-1091

ciples of random sampling (Monte Carlo methods) and search trees to balance exploration and1092

exploitation in making optimal decisions [250, 251]. RetroPath RL takes as input a compound1093

of interest, a microbial strain as a sink (i.e., the list of available precursor metabolites) and a set1094

of reaction rules, e.g., RetroRules, a database of reaction rules for metabolic engineering [252].1095

One interesting application of RetroPath RL is to complete further the metabolism of spe-1096

cific compounds in the human gut microbiota. For instance, Balzerani et al. used RetroPath1097

RL to predict the degradation pathways of phenolic compounds [253]. By leveraging Phenol-1098

Explorer [254], the largest database of phenolic compounds in the literature, and AGREDA [255],1099

an extended metabolic network amenable to analyze the interaction of the human gut micro-1100

biota with diet, the authors generated a more complete version of the human gut microbiota1101

metabolic network.1102

Precision Nutrition1103

Machine-learning models have shown remarkable accuracy in predicting metabolite profiles1104

from microbial compositions [256–258]. Furthermore, the intersection of computational biol-1105

ogy with nutrition science has led to notable strides in personalized nutrition and food quality1106

prediction [259–261]. This emerging field focuses on customizing dietary recommendations to1107

individual biological and physiological profiles, aiming to optimize health outcomes. By employ-1108

ing machine learning algorithms and microbiome data analysis, researchers are able to predict1109

individual responses to various foods and diets, marking a significant advancement in the field1110

of precision nutrition.1111
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Nutrition profile correction1112

An unhealthy diet is associated with higher risks of various diseases [262, 263]. Measuring1113

dietary intake in large cohort studies is often difficult, so we frequently depend on self-reported1114

tools (like food frequency questionnaires, 24-hour recalls, and diet records) that are established1115

in nutritional epidemiology [264–266]. However, these self-reported instruments can be sus-1116

ceptible to measurement errors [267], resulting in inaccuracies in nutrient profile calculations.1117

Although nutritional epidemiology uses methods such as regression calibrations [268, 269] and1118

cumulative averages [270] to address these inaccuracies, deep-learning approaches have not1119

been leveraged to correct random measurement errors.1120

Wang et al. introduce a deep-learning method called METRIC (Microbiome-based Nutrient1121

Profile Corrector) that utilizes gut microbial compositions to correct randommeasurement errors1122

in nutrient profiles derived from self-reported dietary assessments [271]. METRIC draws inspi-1123

ration from Noise2Noise, a deep learning model for image denoising in computer vision that1124

reconstructs clean images using only corrupted inputs [272]. The core concept of Noise2Noise1125

is training the model on pairs of noisy images as both the input and output, compelling the1126

neural network to estimate the average of these corrupted images. This process leads the pre-1127

dictions to statistically align with the clean image due to the zero-mean property of the noise.1128

In a similar way, METRIC addresses random errors in the assessed nutrient profile generated1129

from self-reported dietary assessments, without using clean data (i.e., the ground truth dietary1130

intake). It’s important to note that METRIC targets the correction of the nutrient profile rather1131

than the food profile (or the original dietary assessment), since the high frequency of zero1132

values in the food profile—many food items not consumed—poses significant challenges for1133

machine learning. In contrast, the derived nutrient profile tends to contain predominantly non-1134

zero values. Additionally, METRIC aims to rectify random errors characterized by zero means,1135

instead of systematic biases or errors with non-zero means, as correcting the latter effectively1136

necessitates access to the ground truth dietary intake, which is often unavailable.1137

Metabolomic profile prediction1138

Predicting the metabolomic profile (i.e., quantified amount of metabolites within a biological1139

sample) from the composition of a microbial community is an active area in microbiome re-1140

search. Experimental measurement of metabolites relies on expensive and complex tech-1141

niques like Liquid Chromatography-Mass Spectrometry, which have incomplete coverage [273,1142

274]. In contrast, microbial composition measurements are cheaper, more automated, and1143

have better coverage. Therefore, it is desirable to develop computational methods that predict1144

metabolomic profiles based on microbial compositions [257, 258, 275]. Additionally, such a1145

method could facilitate our understanding of the interplay between microorganisms and their1146

metabolites.1147

Various machine-learning methods have been developed to solve this problem. For ex-1148

ample, MelonnPan uses an elastic net linear regression to model the relative abundance of1149

each metabolite using metagenomic features [275]. It simply models each metabolite individ-1150

ually, missing the opportunity to use shared information across metabolomic features to boost1151

prediction performance. Neural encoder-decoder (NED) leverages the constraints of sparsity1152

and non-negative weights for mapping microbiomes to metabolomes [276]. The use of non-1153
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negative weights in NED imposes a stringent constraint on the model, which simplifies the1154

model complexity but may limit the learning capacity. MiMeNet (Microbiome-Metabolome Net-1155

work) is essentially an MLP that models the community metabolome profile using metagenomic1156

taxonomic or functional features obtained from a microbiome sample [257].1157

Leveraging the state-of-the-art deep-learning method, neural ordinary differential equations1158

(NODE) [219], Wang et al. developed mNODE (metabolomic profile predictor using neural ordi-1159

nary differential equations) [258]. Since the input dimension (the number of microbial species) is1160

different from the output data (the number of microbial species), mNODE integrates the NODE1161

as a middle module, sandwiched by two densely connected layers to adjust for data dimension1162

variability. The method shows superior performance in both synthetic and real datasets than1163

existing methods. Additionally, mNODE can naturally incorporate dietary information into its1164

analysis of human gut microbiomes, improving metabolomic profile predictions. Its susceptibil-1165

ity analysis uncovers microbe–metabolite interactions, which can be confirmed with both syn-1166

thetic and real datasets. Overall, these findings highlight mNODE’s effectiveness in exploring1167

the microbiome–diet–metabolome connection and advancing research in precision nutrition.1168

Personalized diet recommendation1169

In recent years, the intersection of gut microbiome, nutrition science, and machine learning1170

has led to significant advancements in personalized nutrition and food quality prediction. This1171

emerging field aims to tailor dietary recommendations to individual biological and physiological1172

factors (e.g., gut microbial composition), thereby optimizing health outcomes [259–261, 277].1173

Numerous studies use traditional machine learning methods to predict blood glucose levels1174

based on the time-series data from continuous glucose monitor [278, 279]. Similarly, Kim et1175

al. apply RNN to predict blood glucose levels in hospitalized patients with type-2 diabetes1176

[280]. Recently, Lutsker et al. present GluFormer, a generative foundation model based on the1177

Transformer architecture to predict blood glucose measurements from non-diabetic individuals1178

[281]. However, these models do not incorporate dietary information in their inputs, limiting their1179

ability to generate personalized dietary recommendations. In contrast, leveragingmathematical1180

models and Bayesian statistics, Albers et al. predict an individual’s postprandial blood glucose1181

level using the preprandial blood glucose level and carbohydrate intake [282].1182

Zeevi et al. use the gradient-boosting regressor (GBR) to predict personalized postpran-1183

dial blood glucose responses (PPGRs) to meals based on individual factors, including dietary1184

habits, physical activity, blood parameters, anthropometric data, and gut microbiome compo-1185

sition [259]. After being trained on a cohort with 800 participants, GBR is validated using an1186

independent cohort, achieving a Pearson correlation coefficient between predicted and mea-1187

sured PPGRs R = 0.70. A similar machine learning method has been used for other cohorts,1188

such as Food & You [277].1189

Rein et al. extend this personalized approach to a clinical setting, focusing on a randomized1190

dietary intervention pilot trial of 23 individuals with type 2 diabetes mellitus [260]. Based on the1191

well-trained GBR, a personalized postprandial targeting diet is designed for each individual to1192

minimize the individual’s PPGR. Using a leave-one-out approach, the well-trained GBR assigns1193

rankings to each participant’s meals during the profiling week, where 4–6 distinct isocaloric1194

options represent each meal type.1195

Neumann et al. predict the future blood glucose levels in type-1 diabetes patients during1196
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and after various types of physical activities in real-world conditions [283]. The study employs1197

several machine learning and deep learning regression models, including XGBoost, Random1198

Forest, LSTM, CNN-LSTM, and Dual-encoder models with an attention layer. The models use1199

multiple data types, including continuous glucose monitoring data, insulin pump data, carbohy-1200

drate intake, exercise details (like intensity and duration), and physical activity-related informa-1201

tion (e.g., number of steps and heart rate). The output is the predicted blood glucose level at1202

future times, specifically at 10, 20, and 30 minutes after the inputs are recorded. Among many1203

employed models, LSTM is the best-performing model for most patients.1204

Although several machine-learningmethods have been proposed to predict short-term post-1205

prandial responses of only a few metabolite biomarkers, less is explored over the important1206

long-term responses of a wider range of health-related metabolites following dietary interven-1207

tions. Wang et al. introduced a deep learning model, McMLP (Metabolic response predictor1208

using coupled Multilayer Perceptrons), to fill this gap. McMLP consists of two coupled MLPs1209

[261]. The first MLP forecasts endpoint (i.e., after dietary interventions) microbial compositions1210

from baseline (i.e., before dietary interventions) microbial and metabolomic profiles, and dietary1211

intervention strategy. The second MLP uses these predicted endpoint microbial compositions,1212

baseline metabolomic profiles as well as dietary intervention strategies to forecast endpoint1213

metabolomic profiles. When McMLP is benchmarked with existing methods on synthetic data1214

and six real data, it consistently yields a much better performance of predicting metabolic re-1215

sponse than previous methods like random forest and GBR.1216

Despite significant advancements in metabolic modeling and the integration of machine1217

learning techniques for predicting metabolomic profiles, several open questions remain that1218

could drive future research. One such question is to explore whether integrating multi-omics1219

data (combining metagenomic, transcriptomic, and proteomic data) could further refine these1220

predictions. Additionally, reinforcement learning could potentially be leveraged to generate1221

better personalized dietary recommendations.1222

Clinical Microbiology1223

The earliest applications of AI in microbiology can be traced back to the 1970s when MYCIN1224

was developed at Stanford University. MYCIN was an expert system designed to diagnose1225

bacterial infections and recommend appropriate antibiotics. It used a rule-based approach,1226

drawing on a knowledge base of expert-encoded rules to make decisions about infectious dis-1227

eases, particularly blood infections. MYCIN was notable for demonstrating that AI could assist1228

in clinical decision-making, setting the stage for later developments in AI for microbiology and1229

medicine. AI pioneer Allen Newell referred to MYCIN as “the granddaddy of expert systems”,1230

stating it was “the one that launched the field.” Nowadays, various AI techniques have been1231

applied in clinical microbiology. Here we briefly discuss those applications.1232

Microorganism detection, identification and quantification1233

AI techniques, especially supervised machine learning algorithms, are widely used to detect,1234

identify, or quantify microorganisms using various types of data from cultured bacteria [14].1235

Here we briefly discuss how AI techniques are applied across three different data types. (1)1236

Microscopic Images: Deep learning models, particularly CNNs, have been highly effective in1237
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analyzing microscopic images of bacterial colonies [284, 285]. By training on labeled images,1238

these models can classify bacterial species based on their shapes, sizes, arrangements, and1239

staining characteristics (e.g., Gram staining). This approach aids in automating bacterial identi-1240

fication in clinical labs and research, improving the speed and accuracy of microbial diagnostics.1241

(2) Spectroscopy Data: Supervised machine learning algorithms are also employed to analyze1242

spectroscopy data, such as mass spectrometry or Raman spectroscopy, to identify microor-1243

ganisms [286, 287]. For instance, MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization1244

Time-of-Flight) mass spectrometry generates unique protein “fingerprints” for bacterial species.1245

Machine learning models trained on these spectra can quickly and accurately classify species1246

based on their spectral profiles. Raman spectroscopy, which provides molecular fingerprints1247

of samples, also benefits from machine learning algorithms to classify bacterial species or de-1248

tect specific metabolic or pathogenic profiles. (3) Volatile Organic Compounds (VOCs): Many1249

bacteria emit VOCs as metabolic byproducts, which can serve as unique biomarkers for micro-1250

bial identification [288]. Gas chromatography-mass spectrometry (GC-MS) or electronic noses1251

(e-noses) are often used to capture these VOCs. Machine learning models trained on VOC1252

patterns can distinguish bacterial species based on their unique VOC profiles. This approach1253

has potential in medical diagnostics, food safety, and environmental monitoring.1254

Machine learning algorithms in these applications often require substantial labeled data for1255

training, so accurate labeling and quality data collection are crucial. As these models learn to1256

detect subtle differences in physical, chemical, and visual features, they contribute significantly1257

to rapid, non-invasive, and automated bacterial identification, offering promising alternatives to1258

traditional microbiological techniques.1259

Antimicrobial susceptibility evaluation1260

The evaluation of antimicrobial susceptibility has evolved significantly, especially with advance-1261

ments in genomics and AI. Early approaches focused on using well-known antibiotic resistance1262

genes to predict phenotypic susceptibility, achieving good accuracy for pathogens like Staphy-1263

lococcus aureus, Escherichia coli, and Klebsiella pneumoniae. However, challenges arose with1264

pathogens such as Pseudomonas aeruginosa, where resistance is driven by gene expression1265

changes, leading to less reliable phenotype predictions. AI has emerged as a promising tool1266

to address these limitations, especially when mutational knowledge is incomplete. Combin-1267

ing machine learning with gene expression data has improved predictive accuracy, as seen in1268

recent studies on P. aeruginosa, achieving over 90% accuracy for resistance to meropenem1269

and tobramycin [289]. Nonetheless, predictions for other antibiotics, such as ceftazidime, re-1270

main suboptimal. Combining phenotypic and genotypic data has further enhanced accuracy in1271

rapid diagnostics, as demonstrated by Bhattacharyya et al., who achieved 94-99% accuracy1272

in predicting susceptibility profiles for several bacterial species within hours [290]. The use1273

of whole-genome sequencing (WGS) data in machine learning systems has been extended to1274

predict minimal inhibitory concentrations (MICs) and antibiotic susceptibility, with mixed results.1275

For example, prediction accuracy for ciprofloxacin MICs in E. coli remained relatively low com-1276

pared to other antibiotics [291]. Similar machine learning approaches have been employed for1277

Mycobacterium tuberculosis [292], viral evolution studies [293], and understanding viral resis-1278

tance [294], showcasing AI’s broad applicability. We emphasize that while AI techniques show1279

great promise in improving antimicrobial susceptibility testing, challenges remain, particularly1280
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in achieving consistent accuracy across different pathogens and antibiotic classes.1281

Disease diagnosis, classification, and clinical outcome prediction1282

AI can assist in examining novel and intricate data that clinical environments have not fully uti-1283

lized for diagnostic aims. For instance, for certain diseases involving infections, microbes can1284

generate some VOCs in clinical samples. Hence, we can utilize machine learning to evaluate1285

the odors of those clinical samples to diagnose urinary tract infections [295], active tubercu-1286

losis [296], pneumonia [297], and acute exacerbation of chronic obstructive pulmonary dis-1287

ease [298]. For many other diseases associated with disrupted microbiomes, VOCs in clinical1288

samples might not be helpful for disease diagnosis. In this case, we can leverage the micro-1289

biome data itself. Indeed, numerous studies have shown microbiome dysbiosis is associated1290

with human diseases [299, 300]. Those diseases include GI disorders, i.e., Clostridioides diffi-1291

cile infection [301], inflammatory bowel disease [302], and irritable bowel syndrome [303], and1292

other non-GI disorders, for example, autism [304], obesity [305], multiple sclerosis [306], hep-1293

atic encephalopathy [307], and Parkinson’s disease [308]. Applying supervised classification1294

analysis to the human microbiome data can help us build classifiers that can accurately classify1295

individuals’ disease status, which could assist physicians in designing treatment plans [18].1296

Classical machine learning classifiers. Classical MLmethods (e.g., Random Forest, XG-1297

Boost, Elastic Net, and SVM) have been systematically compared in the classification analysis1298

of human microbiome data [309]. It was found that, overall, the XGBoost, Random Forest, and1299

Elastic Net display comparable performance [309]. In case the training data contains micro-1300

biome data (features) collected before the disease diagnosis (labels), the well-trained classifiers1301

can act as predictors, which have an even bigger clinical impact in terms of early diagnosis. For1302

example, predicting asthma development at year three from the microbiome and other omics1303

and clinical data collected at and before year one [310].1304

Phylogenetic tree-based deep learning methods. Classical ML classifiers just treat mi-1305

crobiome data (more specifically, the taxonomic profiles) as regular tabular data, represented1306

as a matrix with rows representing different samples or subjects and columns representing fea-1307

tures (i.e., microbial species’ relative abundances). In fact, unlike many other omics, microbial1308

features are endowed with a hierarchical structure provided by the phylogenetic tree defining1309

the evolutionary relationships between those microorganisms. We can exploit the phylogenetic1310

structure and leverage the CNN architecture to deal with species abundance data. With this1311

very simple idea, several deep learning methods (e.g., Ph-CNN [311], PopPhy-CNN [312], tax-1312

oNN [313], and MDeep [314]) have been developed. Each method exploits the phylogenetic1313

tree in a slightly different way.1314

Ph-CNN takes the taxa abundances table and the taxa distance matrix as the input, and1315

outputs the class of each sample [311]. Here, the distance between two taxa is defined as1316

their patristic distance, i.e., the sum of the lengths of all branches connecting the two taxa on1317

the phylogenetic tree. The patristic distance is used together with multi-dimensional scaling to1318

embed the phylogenetic tree in an Euclidean space. Each taxon is represented as a point in1319

Euclidean space preserving the tree distance as well as possible. Since the data is endowed1320

with an intrinsic concept of neighborhood in the input space, Ph-CNN can then use CNN to per-1321

form classification. PopPhy-CNN represents the phylogenetic tree and species abundances in1322

a matrix format, and then directly applies CNN to perform classification [312]. taxoNN incor-1323
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porates a stratified approach to group OTUs into phylum clusters and then applies CNNs to1324

train within each cluster individually [313]. Further, through an ensemble learning approach,1325

features obtained from each cluster were concatenated to improve prediction accuracy. Note1326

that with each phylum cluster, the authors proposed two ways (either based on distance to1327

the cluster center or based on taxa correlations) to order and place correlated taxa together to1328

generate matrix or image-like inputs amenable for CNN. MDeep directly incorporates the tax-1329

onomic levels of the phylogenetic tree into the CNN architecture [314]. OTUs on the species1330

level are clustered based on the evolutionary model. This clustering step makes convolutional1331

operation capture OTUs highly correlated in the phylogenetic tree. The number of hidden nodes1332

decreases as the convolutional layer moves forward, reflecting the taxonomic grouping.1333

Other deep learning methods. Besides the above deep learning methods that exploit1334

the phylogenetic structure for microbiome data classification, some other deep learning meth-1335

ods (e.g., DeepMicro [112], GDmicro [315], and a transformer-based microbial “language”1336

model [316]) have been developed. Those methods do not leverage the phylogenetic structure1337

of microbiome data.1338

DeepMicro incorporated various autoencoders (including SAE, DAE, VAE, and CAE) to1339

learn a low-dimensional embedding for the input microbial compositional feature, and then em-1340

ployed MLP to classify disease status with the learned latent features [317]. GDmicro is a1341

GCN-based method for microbiome feature learning and disease classification [315]. GDmicro1342

formulates the disease classification problem as a semi-supervised learning task, which uses1343

both labeled and unlabeled data for feature learning ([318]). To overcome the domain discrep-1344

ancy problem (i.e., data from different studies have many differences due to confounding fac-1345

tors, such as region, ethnicity, and diet, which all shape the gut microbiome), GDmicro applies1346

a deep adaptation network [319] to learn transferable latent features from the microbial com-1347

positional matrix across different domains/studies with or without disease status labels. Then,1348

GDmicro constructs a similarity graph, where each node represents a host whose label can be1349

either healthy, diseased, or unlabeled, and edges represent the similarity between two hosts’1350

learned latent features. GDmicro then employs GCN to take this microbiome similarity graph1351

as input and incorporate both the structural and node abundance features for disease status1352

classification. Note that this is a very classical application of GCN to solve the semi-supervised1353

node classification problem on graphs, where some nodes have no labels.1354

Recently, a transformer-based microbial “language” model (MLM) was developed [316].1355

This MLM was trained in a self-supervised fashion to capture the interactions among differ-1356

ent microbial species and the common compositional patterns in microbial communities. The1357

trained MLM can generate robust, context-sensitive representations of microbiome samples to1358

enhance predictive modeling. Note that in this transformer-based MLM, taxa present in each1359

microbiome sample were ranked in decreasing order of abundance to create an ordered list of1360

taxa so that the inputs are analogous to texts. The transformer model then processes these1361

inputs through multiple encoder layers, producing a hidden representation for each taxon. The1362

output of the model includes both sample-level embeddings for classification tasks and context-1363

sensitive embeddings for individual taxon, enabling a nuanced understanding of microbial in-1364

teractions. By pre-training the transformer using self-supervised learning on large, unlabeled1365

datasets and fine-tuning on specific labeled tasks, this approach leads to improved performance1366

for multiple prediction tasks including predicting IBD and diet patterns.1367

Note that those three methods (DeepMicro, GDmicro, and the transformer-based MLM) can1368
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be applied to any omics data for classification purposes. Their design principles were not based1369

on any unique features of microbiome data.1370

Despite the development of various methods, a systematical comparison of those deep1371

learningmethods and classical machine learningmethods on benchmarking datasets is lacking.1372

Since some of those deep learning methods incorporate domain knowledge (i.e., information1373

on the phylogenetic tree, or unlabeled samples), it would be necessary to do that for classical1374

ML methods too, for a fair comparison.1375

Integration of various feature types. Note that 16S rRNA gene sequencing can only pro-1376

vide taxonomic profiles (in terms of microbial compositions) and cannot directly profile microbial1377

genes/functions. Shotgun metagenome sequencing can provide comprehensive data on both1378

taxonomic and functional profiles. It is quite natural to investigate if combining both taxonomic1379

and functional features will enhance classification performance. MDL4Microbiome is such a1380

deep learning method. It employs MLP and combines three different feature types, i.e., taxo-1381

nomic profiles, genome-level relative abundance, and metabolic functional characteristics, to1382

enhance classification accuracy [320].1383

Quite often, we have multi-omics data and clinical data. It would be more insightful to inte-1384

grate those different data types for better disease status classification or prediction. A straight1385

approach would be to concatenate all datasets into a single view, which is then used as the input1386

to a supervised learning model of choice. A more advanced approach is MOGONET, which1387

jointly explores omics-specific learning using GCNs and cross-omics correlation learning for1388

effective multi-omics data classification [321].1389

Recently, in a childhood asthma prediction project, 18 methods were evaluated using stan-1390

dard performance metrics for each of the 63 omics combinations of six omics data (including1391

GWAS, miRNA, mRNA, microbiome, metabolome, DNA methylation) collected in The Vitamin1392

D Antenatal Asthma Reduction Trial cohort [310]. It turns out that, surprisingly, Logistic Re-1393

gression, MLP, and MOGONET display superior performance than other methods. Overall,1394

the combination of transcriptional, genomic, and microbiome data achieves the best prediction1395

for childhood asthma prediction. In addition, including the clinical data (such as the father and1396

mother’s asthma status, race, as well as vitamin D level in the prediction model) can further1397

improve the prediction performance for some but not all the omics combinations. Results from1398

this study imply that deep learning classifiers do not always outperform traditional classifiers.1399

So far, the integration of various data types discussed above is often referred to as early1400

fusion. It begins by transforming all datasets into a single representation, which is then used as1401

the input to a supervised learning model of choice. There is another approach called late fusion,1402

which works by developing first-level models from individual data types and then combining the1403

predictions by training a second-level model as the final predictor. Recently, encompassing1404

early and late fusions, cooperative learning combines the usual squared error loss of predic-1405

tions with an agreement penalty term to encourage the predictions from different data views1406

to align [322]. It would be interesting to explore this idea of cooperative learning in disease1407

classification using multi-omics data [323, 324] (including microbiome data).1408
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Prevention & Therapeutics1409

Peptides identification & generation1410

Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides (AMPs), natural1411

components of innate immunity, are popular targets for developing new drugs. We can divide1412

the AMP activities into different categories, e.g., antibacterial, antiviral, antifungal, antiparasitic,1413

anti-tumor peptides, etc. [325]. Deep learning methods are now commonly adopted by wet-1414

laboratory researchers to screen for promising AMPs. The first work that used neural networks1415

to identify AMPs dates back to 2007, where Lata et al. used a very simple MLP with only1416

one hidden layer [326]. In this work, the authors predicted AMPs based on their N-terminal1417

residues or C-terminal residues, because it has been observed that certain types of residues1418

are preferred at the N-terminal (or C-terminal) regions of the AMPs. In another work published1419

in 2010, Torrent et al. still used a simple MLP with one hidden layer to identify AMPs [327].1420

In this work, they used the physicochemical properties of AMPs as their features. In total, the1421

authors chosen eight features, including isoelectric point (pI), peptide length, a-helix, b-sheet1422

and turn structure propensity, in vivo and in vitro aggregation propensity and hydrophobicity.1423

Those early works apparently require quite a lot of domain knowledge and manual fea-1424

ture selection. This effort can be avoided or mitigated by using deep learning models that can1425

automatically learn complex representations and features from raw data, reducing the need1426

for manual feature engineering. For example, in 2018 Veltri et al. proposed a deep neural1427

network model with convolutional and recurrent layers that leverage primary sequence com-1428

position [328]. Apparently, it is a hybrid deep learning model. By combining CNN and RNN,1429

the model can extract more meaningful and robust features, avoid the burden of a priori fea-1430

ture construction, and consequently reduce our reliance on domain experts. In 2022, Tang et al.1431

proposed a similar hybrid deep learning model that integrated CNN and RNN [329]. This model1432

is called MLBP: multi-label deep learning approach for determining the multi-functionalities of1433

bioactive peptides. It can predict multi-function, e.g., anti-cancer peptides, anti-diabetic pep-1434

tides, anti-hypertensive peptides, anti-inflammatory peptides, and anti-microbial peptides, si-1435

multaneously. Firstly, the amino acids were converted into natural numbers, and the sequences1436

of all peptides were set to be fixed by using the zero-filled method. Then, an embedding layer1437

was used to learn the embedding matrix of the representation of peptide sequences. The em-1438

bedding matrix was fed into a CNN to extract the features from the peptide. Then, an RNN is1439

used to analyze streams of the sequence by means of hidden units. Finally, a fully connected1440

layer is applied to the final classification.1441

The hybrid deep learning approach has been extended further in Ref [330]. The authors1442

started by collecting sequences to build training and test sets and then built and optimized1443

deep learning models to form the AMP prediction pipeline. In particular, the authors included1444

five deep learning models for testing and building the prediction pipeline, including (1) Two CNN1445

+ LSTMmodels; (2) Two CNN + Attention models; and (3) One BERT model. Because the pre-1446

diction biases were independent of each other, the authors eventually tested the intersection of1447

predictions from various combinations of models (2–5 models). This is a very robust approach.1448

Then they mined metagenomic and metaproteomic data of the human gut microbiome for po-1449

tential AMPs, further filtering using correlation network analysis between candidate AMPs and1450

bacteria. Finally, they selected promising candidates AMPs from initial screening and further1451
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subjected them to efficacy tests against multi-drug resistant (MDR) bacteria, and then in vivo1452

experiments in an animal model. This is a very comprehensive work, clearly demonstrating the1453

power of deep learning models in the identification of AMPs from microbiome data.1454

Besides identifying natural AMPs, deep learning approaches have also been developed1455

to generate synthetic AMPs. These approaches include GAN and VAE, as well as their con-1456

ditional variants cGAN and cVAE. The conditional variants enable the generation of peptides1457

satisfying a given condition. For example, AMPGANv2 is based on a bidirectional conditional1458

GAN [331]. It uses generator-discriminator dynamics to learn data-driven priors and control1459

generation using conditioning variables [331]. The bidirectional component, implemented us-1460

ing a learned encoder to map data samples into the latent space of the generator, aids iterative1461

manipulation of candidate peptides. These elements allow AMPGANv2 to generate candidates1462

that are novel, diverse, and tailored for specific applications. Training of GANs was reported to1463

face substantial technical obstacles, such as training instabilities and mode collapse. Hence,1464

VAE-based AMP generations could be an alternative solution. For example, Peptide VAE is1465

based on a VAE, where both encoder and decoder are single-layer LSTMs [332]. The authors1466

also proposed Conditional Latent (attribute) Space Sampling (CLaSS) for controlled sequence1467

generation, aimed at controlling a set of binary (yes/no) attributes of interest, such as antimicro-1468

bial function and/or toxicity. HydrAMP is based on a conditional VAE to generate novel peptide1469

sequences satisfying given antimicrobial activity conditions [333]. This method is suitable not1470

only for the generation of AMPs de novo, but also for the generation starting off from a prototype1471

sequence (either known AMPs or non-AMPs).1472

Probiotic mining1473

The discovery and experimental validation of probiotics demand significant time and effort. De-1474

veloping efficient screening methods for identifying probiotics is therefore of great importance.1475

Recent advances in sequencing technology have produced vast amounts of genomic data, al-1476

lowing us to design machine learning-based computational approaches for probiotic mining.1477

For example, Sun et al. developed iProbiotics, which utilizes k-mer frequencies to characterize1478

complete bacterial genomes and employs the support vector machine for probiotic identifica-1479

tion [334]. iProbiotics conducted a k-mer compositional analysis (with k ranging from 2 to 8)1480

on a comprehensive probiotic genome dataset, which was built using the PROBIO database1481

and literature reviews. This analysis revealed significant diversity in oligonucleotide compo-1482

sition among strain genomes, showing that probiotic genomes exhibit more probiotic-related1483

features compared to non-probiotic genomes. A total of 87,376 k-mers were further refined1484

using an incremental feature selection method, with iProbiotics achieving peak accuracy using1485

184 core features. This study demonstrated that the probiotic role is not determined by a single1486

gene but rather by a composition of k-mer genomic elements.1487

Although iProbiotics has been validated using complete bacterial genomes, its effective-1488

ness on draft genomes derived from metagenomes remains uncertain. Additionally, while the1489

k-mer frequency model has been applied in various bioinformatics tasks, it primarily captures1490

the occurrence frequencies of oligonucleotides and may not fully represent sequence function.1491

Recent advancements in NLP have introduced novel methods for representing biological se-1492

quences. In these models, oligonucleotides or oligo-amino acids are treated as ’words,’ and1493

DNA or protein sequences as ’sentences.’ By using unsupervised pretraining on large datasets,1494
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each word is mapped to a context-based feature vector, potentially offering more informa-1495

tive representations than k-mer frequencies. Building on this concept, Wu et al. developed1496

metaProbiotics, a method designed to mine probiotics from metagenomic binning data [335].1497

It represents DNA sequences in metagenomic bins using word vectors and employs random1498

forests to identify probiotics from the metagenomic binned data.1499

Technically speaking, both iProbiotics and metaProbiotics are not based on deep learning1500

techniques. In particular, the classification analysis still relies on traditional machine learning1501

methods, e.g., SVM and RF. We expect that soon more deep learning-based methods will be1502

developed to solve this very important task.1503

Antibiotic discovery1504

Compared with probiotic discovery, deep learning has been extensively used in antibiotic dis-1505

covery. This thanks to the success of GCNs, which have been repeatedly shown to have robust1506

capacities for modeling graph data such as small molecules. In particular, message-passing1507

neural networks (or MPNNs) are a group of GCN variants that can learn and aggregate lo-1508

cal information of molecules through iterative message-passing iterations [336]. MPNNs have1509

exhibited advancements in molecular modeling and property prediction.1510

The original MPNN operates on undirected graphs. It is trivial to extend MPNN to di-1511

rected multigraphs. This yields Directed MPNN, which translates the graph representation of a1512

molecule into a continuous vector via a directed bond-based message passing approach [337].1513

This builds amolecular representation by iteratively aggregating the features of individual atoms1514

and bonds. The model operates by passing “messages” along bonds that encode information1515

about neighboring atoms and bonds. By applying this message passing operation multiple1516

times, the model constructs higher-level bond messages that contain information about larger1517

chemical substructures. The highest-level bond messages are then combined into a single1518

continuous vector representing the entire molecule.1519

Stokes et al. discovered a drug halicin by drug repurposing using deep neural networks1520

Chemprop [338, 339] to predict molecules with antibacterial activity. Halicin can against a1521

wide phylogenetic spectrum of pathogens, includingMycobacterium tuberculosis, carbapenem-1522

resistant Enterobacteriaceae, and Clostridioides difficile and pan-resistant Acinetobacter bau-1523

mannii infections in Murine models [340]. The first module of Chemprop is a local feature1524

encoding function. A molecule’s molecular SMILES string (simplified molecular-input line-entry1525

system) is used as input and transformed into a molecular graph with nodes representing atoms1526

and edges representing bonds using RDKit [341]. The molecular embedding was learned by1527

GCN and was fed into a feed-forward neural networks for classification.1528

Jame Collins’ lab at MIT recently published two papers on antibiotic discovery [340, 342]. In1529

both papers, they utilized a Direc-MPNN. In principle, their results can be further improved by in-1530

corporating a new variant of MPNN, i.e., atom-bond transformer-based MPNN (or ABT-MPNN),1531

which combines the self-attention mechanism in Transformer with MPNNs for better molecular1532

representation and better molecular property predictions. By designing corresponding attention1533

mechanisms in the message-passing and readout phases of the MPNN, ABT-MPNN provides1534

a novel architecture that integrates molecular representations at the bond, atom and molecule1535

levels in an end-to-end way. This model also has a visualization modality of attention at the1536

atomic level, which could be an insightful way to investigate molecular atoms or functional1537

39



groups associated with desired biological properties, and hence serve as a valuable way to1538

investigate the mechanism of action of drugs (including, but limited to antibiotics).1539

Phage therapy1540

As the most abundant organisms in the biosphere, bacteriophages (a.k.a. phages) are viruses1541

that specifically target bacteria and archaea. They play a significant role in microbial ecology by1542

influencing bacterial populations, gene transfer, and nutrient cycles. Moreover, they can be an1543

alternative to antibiotics and hold the potential therapeutic ability for bacterial infections [343–1544

346].1545

Phage identification. Many computational tools have been developed to identify bac-1546

teriophage sequences in metagenomic datasets [347]. They can be roughly grouped into1547

two classes: (1) alignment-based (or database-based) methods, e.g., MetaPhinder [348], VI-1548

BRANT [349], and VirSorter2 [350]; (2) alignment-free (or learning-based)methods, e.g., VirFinder [351],1549

PPR-meta [154], Seeker [352], DeepVirFinder [353], and PhaMer [354]. Alignment-based1550

methods typically use a large number of sequences of references and utilize DNA or protein1551

sequence similarity as the main feature to distinguish phages from other sequences. Their limi-1552

tations are evident. Firstly, bacterial contigs may align with multiple phage genomes, potentially1553

resulting in false-positive phage predictions. Secondly, novel or highly diverged phages may1554

not have significant alignments with the selected phage protein families, which can lead to low1555

sensitivity in identifying new phages. Alignment-free methods can overcome those limitations1556

via machine learning or deep learning techniques. Those methods learn the features of the se-1557

quence data and are mainly classification models with training data consisting of both phages1558

and bacteria. Some classification models use manually extracted sequence features such as k-1559

mers, while others use deep learning techniques to automatically learn features. For example,1560

VirFinder uses k-mers to train a logistic regression model for phage identification. Seeker (or1561

DeepVirFinder) uses one-hot encoding to represent the sequence data and trains an LSTM (or1562

CNN) to identify phages, respectively. PhaMer leverages the start-of-the-art language model,1563

the Transformer, to conduct contextual embedding for phage contigs. It feeds both the protein1564

composition and protein positions from each contig into the Transformer, which learns the pro-1565

tein organization and associations to predict the label for test contigs. It has been shown that1566

PhaMer outperforms VirSorter, Seeker, VirFinder, DeepVirfinder, and PPR-meta.1567

Recently, a hybrid method called INHERIT was developed. INHERIT (IdentificatioN of bac-1568

teriopHagEs using deep RepresentatIon model with pre-Training) naturally ‘inherits’ the charac-1569

teristics from both alignment-based and alignment-free methods [355]. In particular, INHERIT1570

uses pre-training as an alternative way of acquiring knowledge representations from existing1571

databases, and then uses a BERT-style deep learning framework to retain the advantage of1572

alignment-free methods. The independent pre-training strategy can effectively deal with the1573

data imbalance issue of bacteria and phages, helping the deep learning framework make more1574

accurate predictions for both bacteria and phages. The deep learning framework in INHERIT1575

is based on a novel DNA sequence language model: DNABERT [60], a pre-trained bidirec-1576

tional encoder representation model, which can capture global and transferrable understand-1577

ing of genomic DNA sequences based on up and downstream nucleotide contexts. It has been1578

demonstrated that INHERIT outperforms four existing state-of-the-art approaches: VIBRANT,1579

VirSorter2, Seeker, and DeepVirFinder. It would be interesting to compare the performance of1580
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INHERIT and PhaMer.1581

Phage lifestyle prediction. Besides phage identification, machine learning techniques can1582

also be used to predict the phage lifestyle (virulent or temperate), which is crucial to enhance1583

our understanding of the phage-host interactions. For example, PHACTS used an RF classifier1584

on protein similarities to classify phage lifestyles [356]. BACPHLIP also used an RF classifier1585

on a set of lysogeny-associated protein domains to classify phage lifestyles [357]. Those two1586

methods do not work well for metagenomic data. By contrast, DeePhage can directly clas-1587

sify the lifestyle for contigs assembled from metagenomic data [358]. DeePhage uses one-hot1588

encoding to represent DNA sequences and trains a CNN to obtain valuable local features.1589

PhaTYP further improved the accuracy of phage lifestyle prediction on short contigs by adopt-1590

ing BERT to learn the protein composition and associations from phage genomes [359]. In1591

particular, PhaTYP solved two tasks: a self-supervised learning task and a fine-tuning task. In1592

the first task, PhaTYP applies self-supervised learning to pre-train BERT to learn protein asso-1593

ciation features from all the phage genomes, regardless of the available lifestyle annotations.1594

In the second task, PhaTYP fine-tunes BERT on phages with known lifestyle annotations for1595

classification. It has been shown that PhaTYP outperforms DeePhage and three other ma-1596

chine learning methods PHACTS (based on RF), BACPHLIP (based on RF), and PhagePred1597

(based on Markov model). DeePhafier is another deep learning method for phage lifestyle1598

classification [360]. Based on a multilayer self-attention neural network combining protein in-1599

formation, DeePhafier directly extracts high-level features from a sequence by combining global1600

self-attention and local attention and combines the protein features from genes to improve the1601

performance of phage lifestyle classification. It has been shown that DeePhafier outperforms1602

DeePhage and PhagePred. It would be interesting to compare the performance of DeePhafier1603

and PhaTYP.1604

Phage-host interaction prediction. Phages can specifically recognize and kill bacteria,1605

which leads to important applications in many fields. Screening suitable therapeutic phages1606

that are capable of infecting pathogens from massive databases has been a principal step1607

in phage therapy design. Experimental methods to identify phage-host interactions (PHIs)1608

are time-consuming and expensive; using high-throughput computational methods to predict1609

PHIs is therefore a potential substitute. There are two types of computational methods for1610

PHI prediction. One is alignment-based. We explicitly align the viral and bacterial whole-1611

genome sequences and acquire matched sequences to indicate PHI. The other is alignment-1612

free. We compare nucleotide features and/or protein features extracted from viral and bacterial1613

genomes, and predict PHI using machine learning. Each type of method has its pros and cons.1614

A benchmark study ([361]) of those alignment-free machine learning methods demonstrated1615

that GSPHI [362] and PHIAF [363] are the two best deep learning-based methods for PHI pre-1616

diction. PHIAF is a deep learning method based on date augmentation, feature fusion, and1617

the attention mechanism. It first applies a GAN-based data augmentation module, which gen-1618

erates pseudo-PHIs to alleviate the data scarcity issue. Then it fuses the features originating1619

from DNA and protein sequences for better performance. Finally, it incorporates an attention1620

mechanism into CNN to consider different contributions of DNA/protein sequence-derived fea-1621

tures, which provides interpretability of the predictions. GSPHI is a novel deep learning method1622

for PHI prediction with complementing multiple information. It first initializes the node represen-1623

tations of phages and target bacterial hosts via a word embedding algorithm (word2vec). Then1624

it uses a graph embedding algorithm (structural deep network embedding: SDNE) to extract lo-1625
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cal and global information from the interaction network. Finally, it uses a multi-layer perceptron1626

(MLP) with two hidden layers to detect PHIs.1627

Recently, a deep learning-based method SpikeHunter was developed to perform a large-1628

scale characterization of phage receptor-binding proteins (i.e., tailspike proteins), which are1629

essential for determining the host range of phages [364]. SpikeHunter uses the ESM-2 pro-1630

tein language model [365] to embed a protein sequence into a representative vector. Then it1631

predicts the probability of that protein being a tailspike protein using a fully connected 3-layer1632

neural network. A reference set of 1,912 tailspike protein sequences and 200,732 non-tailspike1633

protein sequences was curated from the INPHARED database [366]. SpikeHunter identified1634

231,965 diverse tailspike proteins encoded by phages across 787,566 bacterial genomes from1635

five virulent, antibiotic-resistant pathogens. Remarkably, 86.60% (143,200) of these proteins1636

demonstrated strong correlations with specific bacterial polysaccharides. The authors found1637

that phages with identical tailspike proteins can infect various bacterial species that possess1638

similar polysaccharide receptors, highlighting the essential role of tailspike proteins in deter-1639

mining host range. This work significantly enhances the understanding of phage specificity1640

determinants at the strain level and provides a useful framework for guiding phage selection in1641

therapeutic applications.1642

Phage virion protein annotation. Phage virion proteins (PVPs) determine many biolog-1643

ical properties of phages. In particular, they are effective at recognizing and binding to their1644

host cell receptors without having deleterious effects on human or animal cells [367]. Due to1645

the very time-consuming and labor-intensive nature of experimental methods, PVP annotation1646

remains a big challenge, which affects various areas of viral research, including viral phyloge-1647

netic analysis, viral host identification, and antibacterial drug development. Various ML meth-1648

ods have been developed to solve the PVP annotation problem [367]. Those methods can be1649

roughly classified into three groups: (1) traditional machine learning-based methods (using NB:1650

naive bayes, RF: random forest, SCM: scoring card matrix, or SVM: support vector machine);1651

(2) ensemble-based methods (using multiple machine learning models or training datasets),1652

and (3) deep learning-based methods. Representative deep learning-based PVP classification1653

methods are PhANNs [368], VirionFinder [369], DeePVP [370], PhaVIP [371], ESM-PVP [372],1654

and a PLM-based classifier [373]. PhANNs used k-mer frequency encoding and 12 MLPs as1655

the classifiers. Both VirionFinder and DeePVP used CNN as classifiers. In VirionFinder, each1656

protein sequence is represented by a “one-hot” matrix and a biochemical property matrix, while1657

DeePVP only used one-hot encoding to characterize the protein sequence. PhaVIP adapted1658

a novel image classifier, Vision Transformer (ViT) [374, 375], to conduct PVP classification. In1659

particular, PhaVIP employed the chaos game representation (CGR) to encode k-mer frequency1660

of protein sequence into images, and then leveraged ViT to learn both local and global features1661

from sequence “images”. The self-attention mechanism in ViT helps PhaVIP learn the impor-1662

tance of different subimages and their associations for PVP classification. ESM-PVP integrated1663

a large pre-trained protein language model (PLM), i.e., ESM-2 [365], and an MLP to perform1664

PVP identification and classification. A similar approach was proposed in [373], where various1665

pretrained PLMs [63, 64, 376]) were used.1666

Phage lysins mining. Phage lysins are enzymes produced by bacteriophages to degrade1667

bacterial cell walls, allowing newly replicated phages to burst out of the host cell [377]. These1668

enzymes specifically target and break down peptidoglycan, a major component of bacterial1669

cell walls, causing rapid bacterial cell lysis and death. Phage lysins have garnered interest1670
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as potential therapeutic agents, especially given the rise of antibiotic-resistant bacteria. Unlike1671

traditional antibiotics, lysins have a uniquemechanism of action and can target specific bacterial1672

species, reducing the risk of off-target effects on beneficial microbiota. However, experimental1673

lysin screening methods pose significant challenges due to heavy workload.1674

Very recently, AI techniques have been applied to discover novel phage lysins [378, 379].1675

DeepLysin is a unified software package to employ AI for mining the vast genome reservoirs1676

for novel antibacterial phage lysins [378]. DeepLysin consists of two modules: the lysin mining1677

module and the antibacterial activity prediction module. The input of the lysin mining module is1678

assembled contigs. This module utilizes traditional blastP/protein sequence alignment-based1679

methods to identify putative lysins. The secondmodule estimates the antibacterial activity of the1680

putative lysins identified by the first module. This module utilizes multiple AI techniques, such1681

as Word2vec and an ensemble classifier that integrates five common classifiers to differentiate1682

diverse and complex protein features. It ultimately applies Logistic Regression as a non-linear1683

activation function to produce final activity predictions as scores ranging from 0 to 1, with higher1684

scores indicating increased antibacterial activity. One limitation of DeepLysin is that four types1685

of manually selected features (i.e., composition-based feature, binary profile-based feature,1686

position-based feature, physiochemical based feature) need to be provided to the classifier.1687

The feature selection procedure apparently heavily relies on domain knowledge.1688

DeepMineLys is a deep learning method based on CNN to identify phage lysins from human1689

microbiome datasets [379]. DeepMineLys started from collecting phage protein sequences to1690

build training and test datasets. These protein sequences were then processed using two1691

distinct embedding methods (TAPE [380] and PHY [381]). Each of the two embeddings was1692

fed into a CNN to learn sequence information and generate representations separately. The1693

two representations of TAPE and PHY were then concatenated into a final representation and1694

fed into a densely connected layer for the final prediction. DeepMineLys leverages existing1695

methods for processing protein sequence features. To some extent, it alleviates the burden of1696

manual feature selection.1697

Vaccine design1698

Vaccines work by stimulating the immune system to produce antibodies, offering protection1699

against future infections. Traditional vaccine development, known as vaccinology, involves1700

isolating a pathogen, identifying its antigenic components, and testing them for immune re-1701

sponse. Reverse vaccinology (RV), a more modern and computational approach, begins by1702

analyzing the pathogen’s genome to identify potential antigenic proteins, which are then synthe-1703

sized and evaluated as vaccine candidates. RV accelerates vaccine discovery and can reveal1704

novel targets that traditional methods might overlook [382, 383].1705

Current RV approaches can be classified into two categories: (1) rule-based filtering meth-1706

ods, e.g., NERVE [384] and Vaxign [385]; and (2) Machine learning-based methods, e.g., Vax-1707

iJen [386], ANTIGENpro [387], Antigenic [388], and Vaxign-ML [389, 390]. The rule-based1708

filtering method narrows down potential vaccine candidates from the large number of antigenic1709

proteins identified through genome analysis. This process involves applying predefined bio-1710

logical rules or criteria (e.g., protein localization, the absence of similarity to host proteins to1711

reduce the risk of autoimmune responses, immunogenicity potential, etc.). These rules help1712

prioritize proteins most likely to elicit a protective immune response, speeding up vaccine can-1713
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didate identification. Note that all these currently available rule-based filtering methods use1714

only biological features as the data input. Machine learning-based RV methods predict poten-1715

tial vaccine candidates by training classifiers on known antigenic proteins and non-antigenic1716

proteins. These machine learning methods can analyze physicochemical or biological features1717

of the input proteins, and then classify new proteins based on the learned patterns. These1718

machine learning methods can identify vaccine candidates with higher accuracy and efficiency1719

compared to traditional methods, leveraging vast datasets and complex patterns that may not1720

be evident through rule-based filtering alone. For example, Vaxign-ML, the successor to Vaxign,1721

utilized XGBoost as the classifier and emerged as the top-performing Machine learning-based1722

RV methods [389, 390].1723

Recently, deep learning techniques have also been developed for RV. For example, Vaxi-1724

DL is a web-based deep learning software that evaluates the potential of protein sequences1725

to serve as vaccine target antigens [391]. Vaxi-DL consists of four different deep learning1726

pathogen models trained to predict target antigens in bacteria, protozoa, fungi, and viruses, re-1727

spectively. All the four pathogen models are based on MLPs. For each pathogen model, a par-1728

ticular training dataset consisting of antigenic (positive samples) and non-antigenic (negative1729

samples) sequences was derived from known vaccine candidates and the Protegen database.1730

Vaxign-DL is another deep learning-based method to predict viable vaccine candidates from1731

protein sequences [392]. Vaxign-DL is also based on MLP. It has been shown that Vaxign-DL1732

achieved comparable results with Vaxign-ML in most cases, and outperformed Vaxi-DL in the1733

prediction of bacterial protective antigens.1734

In the future, it would be interesting to test if other deep learning models (e.g., 1D CNN,1735

RNN, and its variants, or Transformer) can also be used to predict target antigens.1736

Outlook1737

In this review article, we introduced the applications of AI techniques in various application1738

scenarios in microbiology and microbiome research. There are some common challenges in1739

those applications. Here we summarize those challenges and offer tentative solutions to inform1740

future research.1741

Tradeoff between interpretability and complexity1742

Machine learning models, especially deep learning models, often suffer from high complexity1743

and low interpretability, hindering their application in clinical decision-making. In addition, deep1744

learning models typically have more than thousands of neural weights whose training requires1745

large sample sizes and high computational resources. We anticipate that those deep learn-1746

ing models can reach better performance than traditional machine learning models as long as1747

the sample size is enough. However, in most clinic-related studies, traditional models (e.g.,1748

Random Forest) are still widely used due to their ease of implementation, smaller sample size1749

requirement, and better interpretability.1750

To address the interpretability issue, two different approaches can be employed. One ap-1751

proach is to employ methods such as SHAP (SHapley Additive exPlanations) [393], LIME (Lo-1752

cal Interpretable Model-agnostic Explanations) [394] to enhance the interpretability of black-box1753

models. SHAP is a game-theoretic method used to explain the output of any machine learning1754
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model. It links optimal credit allocation to local explanations by leveraging Shapley values from1755

game theory and their related extensions. LIME is a technique that approximates any black box1756

machine learning model with a local, interpretable model to explain each individual prediction.1757

By applying SHAP and LIME, we can gain insights into complex deep learning models, identify1758

biases, and improve transparency, crucial for applications in microbiome research.1759

The other approach is to employ “white-box”models. For instance, ReduNet [395] is a white-1760

box deep network based on the principle of maximizing rate reduction. The authors argued that,1761

at least in classification tasks, a key objective for a deep network is to learn a low-dimensional,1762

linearly discriminative representation of the data. The effectiveness of this representation can1763

be assessed by a principled measure from (lossy) data compression, i.e., rate reduction. Ap-1764

propriately structured deep networks can then be naturally interpreted as optimization schemes1765

designed to maximize this measure. The resulting multi-layer deep network shares key char-1766

acteristics with modern deep learning architectures, but each component of ReduNet has a1767

well-defined optimization, statistical, and geometric interpretation. Applying ReduNet to mi-1768

crobiome data would be an interesting attempt. Unlike ReduNet, MDITRE is a supervised1769

deep learning method specifically designed for microbiome research. It takes a phylogenetic1770

tree, microbiome time-series data, and host status labels to learn human-interpretable rules for1771

predicting host status [396]. The model consists of five hidden layers that can be directly inter-1772

preted in terms of if-then rule statements. The first layer focuses on phylogenetic relationships1773

by selecting taxa relevant to predicting host status. The second layer focuses on time by iden-1774

tifying relevant time windows for prediction. The following layers determine whether the data1775

from selected taxa and time windows exceed specific learned thresholds, and subsequently1776

combine these conditions to generate the final rules for prediction.1777

The “Small n, Large p” issue1778

Similar to many other omics studies, statistical or machine learning methods for microbiome1779

research typically face the “small n, large p” issue, i.e., the number of parameters or microbial1780

features (p) is much larger than the sample size (n). This issue may result in overfitting, models1781

behaving unexpectedly, providing misleading results, or failing completely. There are several1782

classical strategies to deal with the “small n, large p” issue, e.g., feature selection, projection1783

methods, and regularization algorithms.1784

Feature selection involves selecting a subset of features to use as input to predictive mod-1785

els. Although the selection of an optimal subset of features is an NP-hard problem [397],1786

many compromised feature selection methods have been proposed. Those methods are often1787

grouped into filtering, wrapped, and embedded methods [398]. For instance, GRACES is a1788

GCN-based feature selection method [399]. It exploits latent relations between samples with1789

various overfitting-reducing techniques to iteratively find a set of optimal features which gives1790

rise to the greatest decreases in the optimization loss. It has been demonstrated that GRACES1791

significantly outperforms other feature selection methods on both synthetic and real-world gene1792

expression datasets. It would be interesting to apply GRACES to microbiome data analysis.1793

Projection methods generate lower-dimensional representations of data while preserving1794

the original relationships between samples. These techniques are often employed for visual-1795

ization but can also serve as data transformations to reduce the number of predictors. Exam-1796

ples include linear algebra methods like SVD, PCA, and PCoA, as well as manifold learning1797
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algorithms, such as t-SNE, commonly used for visualization.1798

In standard machine learning models, regularization can be introduced during training to1799

penalize the use or weighting of multiple features, promoting models that both perform well1800

and minimize the number of predictors. This acts as an automatic feature selection process,1801

and can involve augmenting existing models (e.g., regularized linear and logistic regression) or1802

employing specialized methods like LASSO or multivariate nonlinear regression [400]. Since1803

no single regularization method is universally optimal, it’s advisable to conduct controlled ex-1804

periments to evaluate various approaches.1805

Recently, it has been proposed to use promising deep learning techniques (e.g., trans-1806

fer learning, self-supervised learning, semi-supervised learning, few-shot learning, zero-shot1807

learning, etc.) to deal with the “small n, large p” issue [401]. For example, transfer learning in-1808

volves pre-training a model on a large dataset and then fine-tuning it on a smaller, task-specific1809

dataset [58]. By leveraging knowledge from a related but larger dataset, the pre-trained model1810

can transfer learned representations to the small dataset, helping mitigate the issue of insuf-1811

ficient data. Self-supervised learning is an approach to creating supervisory signals from the1812

data itself, eliminating the need for labeled data [57]. This approach can effectively learn use-1813

ful representations even with limited labeled data, as the model can train on unlabeled data,1814

which is usually more abundant. In microbiome research, self-supervised techniques can use1815

metagenomics sequences without annotations to learn meaningful patterns, later applied to the1816

small labeled subset. Semi-supervised learning leverages a small amount of labeled data and1817

a large amount of unlabeled data to train the model. Since the labeled data is small (small n),1818

semi-supervised learning helps by learning from both labeled and unlabeled data to improve1819

generalization. Few-shot learning enables models to generalize from very few examples [402].1820

Few-shot learning techniques are specifically designed to handle scenarios with limited training1821

data. They can quickly adapt to new tasks with only a handful of training samples. In person-1822

alized medicine, few-shot learning can help tailor models to individual patient data even when1823

there is limited patient-specific training data. Zero-shot learning enables models to make pre-1824

dictions for classes they have not been explicitly trained on by learning from related classes1825

or tasks [403]. This approach is especially useful when the data for certain categories or con-1826

ditions is entirely missing (n = 0), allowing models to generalize from related categories or1827

contexts. Deep learning models, especially those trained using self-supervised and transfer1828

learning methods, can handle the high-dimensional feature space (large p) because they are1829

adept at extracting useful features or representations from complex data. These approaches1830

mitigate the problem of small sample sizes by either leveraging external data (e.g., transfer1831

learning) or creating more efficient learning algorithms (e.g., few-shot and zero-shot learning).1832

Applying those promising deep learning techniques to microbiome research to deal with the1833

“small n, large p” issue would be very interesting. Some of the deep learning methods (espe-1834

cially those methods based on LLMs) discussed in this Review have already leveraged some1835

of those techniques (e.g., transfer learning).1836

Benchmarking evaluations1837

As we mentioned in previous sections several times, benchmarking evaluations are typically1838

lacking in microbiology and microbiome research. Currently, there is no standardized pipeline1839

for benchmarking machine learning or deep learning methods in microbiology and microbiome1840
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research. To ensure reproducibility across studies, it’s critical to standardize data preprocess-1841

ing, which includes consistent methods for data collection, bioinformatics pipelines, and the1842

profiling of microbiome taxonomies. Additionally, if feature dimension reduction is needed, it1843

must be unbiased, using standardized methods for feature selection or reduction that apply1844

uniformly across studies. Importantly, feature engineering should only be applied to training1845

data and later evaluated on test data to avoid data leakage or overfitting. Furthermore, the1846

creation of publicly available, well-annotated benchmarking datasets (analogous to MNIST or1847

ImageNet in computer science) would provide the microbiome research community with reli-1848

able tools to assess and compare different machine learning models. Such datasets would1849

accelerate progress and provide a framework for objective evaluation of new computational1850

methods. Some attempts have been made in this regard. For example, MicrobiomeHD is a1851

standardized database that compiles human gut microbiome studies related to health and dis-1852

ease [404]. It contains publicly available 16S data from published case-control studies, along1853

with associated patient metadata. The raw sequencing data for each study was obtained and1854

processed using a standardized pipeline. The curatedMetagenomicData package is another1855

excellent example of benchmark microbiome datasets. It offers uniformly processed human1856

microbiome data, including bacterial, fungal, archaeal, and viral taxonomic abundances, as1857

well as quantitative metabolic functional profiles and standardized participant metadata [405].1858

This comprehensive, curated collection of metagenomic data is well-documented and easily1859

accessible, making it suitable for benchmarking machine learning methods.1860

Establishing benchmark datasets is critical for advancing AI application in microbiology and1861

microbiome research. Such datasets enable consistent, unbiased comparisons of algorithms1862

and promote the development of robust predictive models. By providing standardized data, the1863

research community can evaluate AI methods on a level playing field, ensuring reproducibility1864

and transparency. Similar to the successful DREAM challenges in genomics, a community-1865

driven effort to create public benchmarking datasets will foster collaboration, accelerate discov-1866

ery, and establish best practices for AI approaches in microbiology and microbiome research.1867

Collaborative input is vital for making this a reality.1868
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